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MAXIMUM LIKELIHOOD IDENTIFICATION AND OPTIMAL INPUT DESIGN

FOR IDENTIFYING AIRCRAFT STABILITY AND CONTROL DERIVATIVES

By David E. Stepner and Raman K. Mehra

Systems Control, Inc.

INTRODUCTION

Aircraft parameter identification is the process of extracting

numerical values for the aerodynamic stability and control derivatives,

and other subsidiary parameters (wind gusts, sensors errors, etc.),

from a set of flight test data (a time history of the flight control

inputs and the resulting aircraft response variables). The field of

identification is one that has been pursued by diverse interests for

many years. The practical application of this work to aircraft

flight testing has existed for over 25 years. In spite of the wealth of

experience which has been accumulated in this span of time, important

requirements still exist for improving the techniques for extracting

stability and control derivatives.

First, there exists today a greater need for stability and control

derivatives. There are currently two principal requirements for the

mathematical models that these coefficients provide. These are (i) to

provide inputs to simulators*, and (2) to provide a basis for the

design of flight control systems. A third potential may also exist.

Because the stability and control derivatives define a given aircraft

more uniquely than the response mode criteria such as those in the

*This may include digital computer simulations, fixed and moving base ground

simulators, and in-flight simulators such as variable stability aircraft.



Flying Qualities Military Specification MIL-F-8785 there is reason to

believe that these parameters will ultimately play more of a major role

in the design, testing, and certification of aircraft.

Second, with the continuing advances in aircraft design and perform-

ance capabilities, the ability to extrapolate wind tunnel test results

is diminishing and the importance of flight testing is growing. This is

aided by the new Department of Defense pollcy of building prototype air-

craft and thoroughly flight testing them before a production conm_tment

is made.

The principal elements of the aircraft identification process

(see Fig. i.I) are: (i) the identification algorithm, (2) the flight

control input and (3) the instrumentation. The ultimate success of

the identification process is totally dependent on all three of these

elements, not Just one of them alone. This study was concerned with

the first two points, namely, the development of a general advanced

digital identification technique based on the maximum likelihood criterion

and the design of control inputs which will enhance the ability to

identify specific aircraft stability and control derivatives. Digital

parameter identification techniques have already reached a stage where

they are being used increasingly over analog matchlng techniques for

extracting stability and control derivatives from flight test data.

Systems Control, Inc., (SCI) under this present contract developed

the maximum likelihood identification technique, which was used

successfully to reduce data from flight tests where gusts were present.

In such cases both the measurement noise and process noise statistics

were identified.

The importance of the control input in the identlfiabillty of

stability and control derivatives from response data has been apparent

for a long time. Under this contract, SCI has developed and applied

an efficient computational technique to design the optimal inputs for

identifying specific stability and control derivatives.
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This report is organized as follows:

• Section II includes the specific task objectives of this

contract and a summary of the principal results.

• Section III discusses the background material for the identi-

fication of aircraft stability and control derivatives.

• Section IV describes, in detail, the SCI Maximum Likelihood

Identification Method. The derivation is carried out for

both linear and non-linear models with and without process

noise. The relationship of the technique to the output

error and equation error methods is described and the re-

lated identifiability problems are discussed. Included also

is a detailed description of the SCI Maximum Likelihood

Identification Program.

• Section V presents the results on the identification of the

stability and control derivatives for several different

aircraft and under a variety of noise conditions. This

includes simulated data for a nonlinear model of an X-22

VTOL, actual flight data from an HL-IO lifting body (linear

model) and flight data containing gust effects for an M2/F3

lifting body (linear model).

• Section VI covers the requirements and the background material

relating to the design of inputs for aircraft parameter iden-

tification.

• Section VII describes the details of the theoretical develop-

ment and the Computational technique of computing optimal

inputs for identifying aircraft stability and control derivatives.

Several examples for which analytical solutions for the optimal

input exist are presented to illustrate the form which the

optimal inputs take. Included also is a detailed flow diagram

of the SCI Optimal Input Design Program.



• Section VIII presents numerical results showing the character-

istics of optimal inputs, and comparing the performance of the optimal
input with a doublet input of equal energy and duration. The
results of a Monte Carlo simulation of the identification pro-
cess for the short period longitudinal derivatives of a C-8

aircraft are presented indicating a substantial advantage in
using the optimal input.

• Section IX states the conclusions based on the results

of this study.

• Section X contains recommendationsfor further work.



II

OBJECTIVES AND SUMMARY OF RESULTS

This section presents (1) a statement of the study objectives,

(2) an outline of the SCI Maximum Likelihood Identification Method and

the SCI technique for designing optimal inputs for aircraft stability

and control derivative identification and (3) a summary of the principal

results of this study. The section is self-contalned and is intended

to provide the reader with an overview of the report.

2.1 Study Objectives

The objectives of this study were two-fold. First, it was desired

tO further develop the Maximum Likelihood Identification technique,

originated by SCI in 1970, to the extent that it would successfully process

actual flight test data containing random flight disturbances. This

processing was to include identifying the correlation function of the

random disturbance and determining a model for its representation. The

second objective was to develop the theoretical foundation and construct

a computer program for designing flight test inputs which would enhance

the ability to identify specified stability and control derivatives.

To achieve the above objectives the following tasks were defined

and completed:

Maximum Likelihood Identification:

(I) Investigate the effects of different sensitivity terms in

the identification of stability and control derivatives

of X-22 VTOL aircraft, from simulated data, for a nonlinear

aerodynamical model

(2) Check out completed ML identification algorithm on HL-10

(Lifting Body) flight data, for a linear aerodynamical

model, for which previous results had been obtained

6



(s)

(4)

Identify stability and control derivatives of the M2/F3

(Lifting Body) from flight data containing random disturbances,

for a llnearmodel for which previous identification attempts

with output error method have not succeeded.

Investigate symptoms, causes and remedies of parameter

identiflability and uniqueness problems.

Optimal Input Design:

(1) Construct operational computer program, based on results

of theoretical study, for designing optimal inputs

(2) Perform a Monte Carlo simulation of the identification process,

comparing the optimal input with a suboptimal input, for a

model of the C-8 linear longitudlnal equations of motion.

2.2 Maximum Likelihood Identification Technique

For the last 20 years various techniques such as fourier analysis,

analog matching, and the tlme-vector method have been used to extract

numerical values for the aerodynamic stability and control derivatives

from records of flight test data. It has only been in recent years that

modern digital computer techniques have been proposed for this problem.

One of the most successful of these computer techniques is the Maximum

Likelihood method developed by Systems Control, Inc. This technique

holds great promise for future identification problems involving new

aircraft configurations (VTOL,STOL), high angle of attack transonic

flight regime, flight test data containing gusts and for aircraft with

stability augmentation systems.

In the most general case, the maximum likelihood identification

technique is a combination of three steps: (i) Kalman filtering to estimate

the states and generate a residual or "innovation" sequence, (2) a modifled

Newton-Raphson algorithm for the parameter estimates and (3) an algorithm

to estimate the noise statistics (mean and variances of the measurement and



process noise). In addition, the maximum likelihood technique provides a

lower bo_Jnd on the variances of the parameter estimate, and models for

the measurement and process noise disturbances.

Under this contract the maximum likelihood identification technique

has been applied to a Variety of flight test data both simulated and

real. The objective has been to exercise the technique as much as

possible and to investigate the problems that arose. As each problem

was solved, the specialized algorithm needed for its solution (if any)

was added to the complete maximum likelihood identification program.

The goal was to develop a set of general computer algorithms capable of

dealing with problems that arise in the identification of aircraft

stability and control derivatives.

2.2.1 X-22 VTOL Simulated Data

The first phase of the identification study was the processing of

data from a simulation of the X-22 VTOL Aircraft. The longitudinal aero-

dynamic equations of motion were nonlinear and the data contained both

measurement noise and process noise. Each of the stability and control

derivatives was expressed as first or second order polynomial expansions

in terms of the longitudinal velocity. The objective was to identify

23 of these expansion coefflc_ents and the quantitative effect of in-

creased noise power on the quality of the parameter estimates.

The problems encountered were almost all associated with either the

aircraft model or the control input sequence. It was discovered quite

soon in the investigetion that a simple step input did not sufficiently

excite the aircraft modes to allow for the accurate identification of

many of the derivatives. The use of a multlstep input improved these

parameters a great deal , because of the model structure the input and

output noise sequences were correlated. Accounting for this correlation

improved the parameter estimates by increasing the estimate error co-

variances, thereby bringing many estimates to within one standard deviation



of the actual values. During earlier investigations, some of the

sensitivity terms were not included in the identification algorithm.

When these terms were added, however, the quality of the parameter

estimates changed very little, although the computer time, per iteration,

more than doubled.

A compilation of the results indicated that for "low" measurement

and process noise, the maximum likelihood identification technique was

able to identify all of the expansion coefficients, except those for

Z_, accurately. When the expansions were recomblned to form the time-

varying stability and control derivatives, the fit to the derivatives

Mo, Mq, Mw, M6, Xo, Xw, X_, Z was very good, the fit to Z was acceptableo w

and only the fit to Z6 would be considered unsatisfactory. When "moderate"

process noise was used all the estimates of the expansion coefficients

degraded.

2.2.2 HL-10 Flight Data

The second phase of the identification study involved using the maximum

likelihood technique in the output error mode to identify the linearized

lateral stability and control derivatives from flight test data for an

HL-10 lifting body. Although the technique had no difficulty in accurately

fitting the observed data (p, r, _, 8 and n ), several of the derivative
a
Y

estimates had opposite signs from the wind tunnel�theoretical derived

values which were used as initial estimates. These incorrect signs Eould

be attributed to any one of the following factors: (i) insufficient

excitation of particular aircraft modes due to inadequate input or action

of the SAS system, (2) the linearized dynamics not sufficiently accurate

for the flight conditions of the data, or (3) correlated measurement

noise due to instrumentation system dynamics.

In an effort to correct these signs, a modification to the maximum

likelihood technique was attemped. This modification was to add to the



likellhood criterion a quadratic term putting a weighted cost on the

difference between the a priori parameter estimates and the latest estimates.

Using the weights supplied by NASA Edwards FRC, this "a priori weighting"

method resulted in the correct signs and only a slightly (10%) degraded

fit to the observed data, as long as the measurement biases were identified,

in addition to the other parameters.

2.2.3 M2/F3 Flisht Data

This third phase of the study involved extracting the linearized,

lateral stability and control derivatives of an M2/F3 lifting body from

flight test data containing gusts. Unlike the HL-10 data which had been

successfully processed earller by the use of the Output Erroz technique

neither a satisfactory set of stability and control derivative estimates

nor a satlsfacory fit to the observed data had not been obtained from

the M2/F3 data. Using an approximation that the gust noise in the sideslip

angle measurement was much greater than the measurement noise and the maximum

likelihood method with a Kalman filter model to account for the process

noise, an accurate fit to the observed data was obtained. However, as in

the HL-10 case, some of the estimated derivatives had s_gns opposite to

those of the a priori estimates.

The a priori weighting method, which was used successfully on the

HL-10 data, proved to be not useful on the M2/F3 data. Two other techniques,

both dealing with identlflabillty problems, were investigated. The first

technique involved fixing at their a priori values one or more of a set

of unknown parameters whose effect on the observed data was very similar

(e.g. parameters that appear as a sum) or any parameter which has negllble

effect on the data. The best fits to the M2/F3 data was obtained with

the derivatives L Lr, LB, Np, N and all the 6 derivatives fixed.p' r r

The quality of the fit, however, was below that obtained without any para-

meters fixed.

The other technique involved eliminating from the set of allowable

10



values for the parameter estimates those eigenveetor directions about

which very llttle information could be gained from the data. These

slngular directions are associated with the smaller elgenvalues of the

information matrix. When applied to the M2/F3 data, three singular direct-

tlons were determined. Unlike the other two techniques of fixing parameters

or a priori weighting, the fit to the observed data remained very good and

most of the sign problems were corrected. It is felt that this method

offers great promise in future applications.

2.3 Optimal Input Design

As was shown with the X-22 simulated data, the use of the proper

control input sequence can greatly improve the quality of the parameter

estimates. This is done by maxlmlzlng the sensitivity of the system

response to the unknown parameters to be identified. The optimal input

to be used in system identification would therefore be one which optimizes

some criterion based on the output sensitivity with respect to all the

parameters to be identified.

During the second part of this contract, a computer program was

developed which determines, for an arbitrary linear system and an arbitrary

selection of parameters to be identified, the optimal input for parameter

identification. The two criteria for optimality used in this program are

(i) maximum sum of the (squares of the) the output sensitivities and

(2) maximum product of the squares of output sensitivities. The first

criterion is related to the trace of the Fisher Information Matrlx and

the second criterion is related to the determinant of the same matrix.

The Information Matrix itself is the inverse of the Cramer-Raolower

bound for the covariances of the parameter estimates.

The only constraint put on the input is one of total energy. State

and input amplitude constraints can be imposed indirectly by changing the

input energy content. In addition algorithms have been added which will

ii



specify the optimal input for a specified data length as well as investigating

the frequency content of the optimal input.

The major emphasis in the optimal design part of the contract was

in two areas. The first was to investigate the properties of the optimal

input with respect to frequency content, comparison with a suboptimal

input and the effect of parameter uncertainties. The second involved

a Monte Carlo simulation of the identification process involving comparisons

of an optimal input and a suboptimal doublet input for identifying the

short period dynamics of a C-8 aircraft.

2.3.1 Optimal Input for C-8 Aircraft Identification

The optimal input for identifying the five stability and control

derivatives associated with the short period longitudinal dynamics of a

C-8 aircraft (assuming a priori wind-tunnel parameter values)was derived

using the trace of the Information matrix criterion. When compared to

the suboptimal doublet input of equal energy and duration the optimization

criterion was almost 20 time as large. Frequency domain analysis inferred

that the input was made up of a DC component to identify the gain para-

meters (control derivatives) and a sinusoidal component at the system

natural frequency. This was to maximize output signal power and optimize

the identification of the stability parameters. It was further found

that if the optimal input was determined based on estimates of the stability

derivatives which were 10% in error, the qualitative character of the optimal

input did not change, and the accuracy with which the parameters could be

identified remained approximately the same.

The last exercise of this first part was to determine the optimal

input based on the second performance criterion viz. maximizing the product

of the diagonal elements of the information matrix. Based on the value

of the expected standard deviations for the parameter estimates, the optimal

input determined from this second criterion was much improved over that

12



determined from the first.

2.3.2 Monte Carlo Simulation

The more realistic test for the optimal input is to use it under

actual identification conditions, to determine if the statistics

of the parameter estimates and computed information matrices match those

predicted from a priori analysis. A four state linear model of the full

C-8 longitudinal dynamics was used in generating the simulated flight

data, with the control input designed to identify only the five short

period dynamics. In addition, the control input was designed with each of

the short period stability and control derivative changed by 50% from the

values used in the data generation. This was to model the situation where

the control sequence for aircraft identification is detemlned from a

priori wind tunnel or theoretical derivative values. 50 complete identi-

fication runs were made both with the optimal input and wlth a suboptimal

doublet input of equal energy and duration.

The parameter estimates from each run were compiled and total results

evaluated based on 50 runs. With all measures of comparison, the optimal

input greatly out performed the suboptimal input. Histograms of the

parameter estimates were also compiled and compared. The results after

50 runs closely matched the results predicted by the Cramer-Rao lower

bound. Experiments were also run by modifying the optimal and the doublet

inputs through the servo transfer functions. The use of optimal inputs

in flight testing for the determination of aircraft stability and control

derivatives appears, therefore, to be a very useful and powerful tool.
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Ill

BACKGROUND FOR AIRCRAFT PARAMETER IDENTIFICATION

Although extensive time and effort, over a period of the last 20 years,

has been expended in the development of more exact aircraft stability and

control derivative identification techniques, up until recently, the extrac-

tion of these derivatives from flight data remained a difficult and time-

consuming problem. An emphasis on working directly with flight data, in

addltlon to dealing with wind tunnel tests or theoretical calculations, has

evolved as a result of what is often gross disagreement between wind tunnel

and flight test derivatives, as well as the known difficultles of obtaining

dynamic derivatives and extrapolating them to full scale derivatives from

the wind tunnel values.

There have been many methods proposed and tried for extracting stability

and control derivatives from flight data. Most of these have proved to be

successfulonly under idealized conditions such as no wind gusts or modeling

errors and known instrumentation accuracies. Very often a good deal of the

data collected during a flight test program has to be discarded for lack of

a technique which is general enough to process it under less than ideal con-

ditions.

The emergence of the digital techniques during the past few years,

resulting in the development of the Maximum Likelihood Identification Techniques,

has given rise to the realization that much of the previously discarded data

can be successfully processed. As the limitations of the instrumentation system,

flight control input and inadequate aerodynamic model are recognized and com-

pensated for, and the presence of wind gusts is included in the model structure

and accounted for in the identification algorithm, the best set of identified

values for the stability and control derivatives can be obtained.
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This section will discuss several of the previous identification

techniques which have been used to process flight data. This discussion

will bring out the similarities that exist among these methods, and mention

the aircraft flight data to which the methods have been applied. The next

section, then, will provide a detailed explanation of the Maximum Likelihood

Technique to be applied later on to flight test data containing gusts.

3.1 Previous Identification Methods

Although a large number of identification methods have been used in the

past, only some of the more common methodswhich are currently in use will

be described.

3.1.1 Time Vector Method

The time vector methods for derivative identification is derived from the

tlme-lnvariance of the amplitude and phase relations between the state

variables (degrees of freedom) of an exponentially damped second order system

and the derivatives and integrals of the state variables. This invarlance

is used to determine the values of the amplltude-phase relations, thereby

determining the aircraft stability and control derivatives (Ref. i).

When more than one state variable (degree of freedom) is involved in the

transient response, and there is a common natural frequency, the instantaneous

value of any one state may be readily determined if the characteristics of any

one of the motions are known, along with the amplitude ratio and phase angle

relative to the characteristic motion. The time invarlance of the amplitude

ratios and their phase angles permits the representation of any one of the

linearized equations of motion as vectors. The properties of these vectors,

plus the requirement that the vector sum of the quantities in any one equation

equal zero, makes possible the determination of two unknown derivatives in any

one equation.
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As Ref. 2 points out, the time vector method has the principal

disadvantage that it can only be applied to control-fixed, transient-

oscillation aircraft responses with damping ratios less thanZ.3. Further-

more, the successful application of the time-vector method is highly de-

pendent on the operators' skill.

3.1.2 Analog-Matching Methods

The analog matching technique is actually an output error method since

it strives to iteratively minimize the errors of the various responses through

operator manipulation of the values of the stability and control derivatives.

It is often used as a backup method for validating the more modern digital

techniques. However, there are several disadvantages to the analog match-

ing technique. First, the method works most successfully only when a

single control surface is moved at a time and then only when the maneuvers

are simple.(Ref. I). Second, when the maneuvers are made with a stability

augmentation system or other form of dependent control input, the data is

difficult to analyze. Finally, this method is extremely time consuming,

even in face of the fact that recent procedures, through the use of hybrid

computers, has reduced the time considerably. For example, the time in-

volved in analyzing a lateral-directional flight maneuver, from receipt of

flight data to final results, is approximately four hours (Ref. 2); the analog

matching technique is also extremely susceptible to uniqueness problems

since the success of a data analysis is very dependent upon the type of

control maneuvers used. In such a case the skill and knowledge of the operat¢,r

would play an important part in determining the ultimate success of the analys:is.

The analog matching technique has been used by the Air Force Flight Test

Center (Ref. 3), the Naval Air Test Center (Ref. 4), and the NASA Fli_ht Test

Center (Ref. 5) for the F-104. X-15, B-70, HL-IO, M2/F3, X-24 and PA-30 aircraft.
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Most of the remaining identification techniques, almost all of which
require the use of a digital computer, can be classified as either

i. Equation error methods,
2. Output error methods, or
3. Advancedmethods.

Thesemethodsdiffer by (i) the performance criterion that they are
developed from, (2) the kinds of estimates they produce, and (3) the problems
to which they can be applied.

3.1.3 Equation Error Methods

Equation error methods (Ref. 6) assume a performance criterion

that minimizes the square of the equation error (process noise). All of

these methods are basically least squares techniques and, in general, it is

necessary to measure all the response variables and their derivatives. The

procedure is to express the stability and control derivatives as functions

of the measured responses using the equations of motion. This results in

n or more linear equations in n unknowns. For those cases where the time

derivatives are not measured, various "method functions" are used to operate

on these equations (take time derivatives, Laplace or Fourier transforms,

etc.) to obtain equations that are linear in the unknown stability and control

derivatives. Since these methods do not allow for measurement errors (instru-

mentation errors), they result in biased estimates when this type of error

does exist. The principal use of these methods are as start-up techniques

for the output error and advanced methods.

The equation error methods have been used or are being used by Cornell

Aeronautical Laboratory (Ref. 6), Air Force Flight Test Center (Ref. 3),

and Delft University of Technology (Ref. 7).
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3.1.4 Output Error Nethods

Output Error Methods (Refs. 8 through 17) minimize the square

of the error between the actual system output and the output of

a model used to represent the actual system. This method assumes measure-

ment noise but no process noise. Typical output error methods include

Newton-Raphson, Gradient methods, the Kalman Filter (without process noise),

and modified Ne_on-Raphson, differential correction, and quasillnearization

(all three of which are the same method).

The modified Newton-Raphson method has been used extensively in flight

test applications for the past several years. It is the one method that has

been used on an operational basis and for which the most experience exists.

This method has been or is being used by (among others): (1) the NASA Flight

Test Center (Ref. 5) on the X-24, X-14, XB-70, 990, HL-10, M2/F3, Jet

Star and PA-30 aircraft; (2) the NASA Ames Research Center (Reference 18 )

on the LearJet, XV-5, 990 and the C-8 aircraft; and (3) the NASA Langley

Research Center (Refs. 19,20) on the XC-142, Navlon and F-4 aircraft.

(NASA Langley program has automatic update of the weighting matrix based on

the maximum likelihood criterion.)

The principal disadvantages of the output error methods is that, because

they do not include process noise in their performance criterion, the results

degrade when process noise (gusts, modelling errors) exists. This may result

in the computer program not converging or in estimates that have large vat-

lances or poor estimates (Ref. 21). However, as long as these methods

are applied to linear flight regions, or where the form of the equations is

known, or where gusts do not exist, they work very well.

3.1.5 Advanced Methods

The most general identification problem is one of extracting stability

and control derivatives, for non-linear aircraft models, from flight data
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containing both measurement and process noise. The one advanced technique

that has demonstrated the capability of extracting stability and control

derivatives from flight data under these circumstances is an implementation

of the maximum likelihood criterion. This numerical algorithm, developed

by SCI, is a combination of three steps: (i) Kalman filtering to estimate

the states and generate a residual sequence, (2) a modified Newton-Raphson

algorithm for the parameter estimates, and (3) an algorithm to estimate the

noise statistics (means and variances of the measurement and process noise).

The details of the numerical method are outlined in the next section.

The success of the SCI maximum likelihood technique can be attributed

to several important attributes of this method:

I. It does not require a priori knowledge of the process noise

covariance, measurement noise covariance or the initial parameter

estimate covarlance. These covarlances are determined as part of

the identification procedure.

2. When process noise does not exist, this method simplifies to the

modified Newton-Raphson output error method (although_rlth a spe-

cific weighting matrix).

3. When no measurement noise exists (an unlikely event) this method

simplifies to the least squares equation error method.

4. The Cramer-Rao lower bound on the covarlance of the error in the

stability and control derivative estimates are obtained as part

of the algorithm.

5. The minimum mean-square aircraft state variables (response variables)

are obtained as an integral part of the algorithm. It is not re-

quired, however, that initial state estimates be supplied.

The following section gives a detailed derivation of the Maximum Likelihood

Identification Method.
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IV

MAXIMUM LIKELIHOOD (ML) IDENTIFICATION

The notion of the maximum likelihood estimate which was introduced

into statistics by R. A. Fisher in 1906 is based on a relatively simple

idea. Assume that the outcome Z of an experiment depends on an unknown

parameter e. We want to infer the best value of e from the observation

Z. One answer is to choose that value of 8 which makes the observed

value Z the most probable one to have occurred. This can be rigorously

stated as: choose e to maximize the conditional probability of Z, given

a value of e ; i.e.

^

e = max p(zlo)
8

A

where 0 is the maximum likelihood estimate of 0 and p(ZlO) is the

conditional probability of Z, given O. The same estimate is obtained by

maximizing log p(ZlO) which is known as the likelihood function.

The above basic idea can be carried over to linear and nonlinear

dynamic systems, with process and measurement noise, but the details of the

application become quite involved. In practice, there are two major pro-

blems in obtaining ML estimates for dynamic systems. These are:

i. Deriving an expression for the likelihood function, and

2. Maximizing the likelihood function with respect to the unknown

parameters.

These two problems are elaborated upon further. The likelihood function

is the logarithm of the joint probability density of the observations given

the parameters. If the observations are independent, the joint probability

density function is easily written down since it is just the product of the
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probability densities of each observation given the parameters. The deriva-

tion of the likelihood function becomesmuchmoredifficult whenthe obser-

vations are correlated. This is necessarily the case for dynamic systems
with randominputs since the state at any time is correlated with the state

at all the previous times. In the next section, it is shownhow the likeli-

hood function for a dynamic system can be derived in a simple form using a
Kalmanfilter and the resulting white noise innovation sequence. This is
shownschematically in Figure 4.1.

Thesecond problem in obtaining MLestimates is a computational one.

Generally, the likelihood function is highly nonlinear in terms of the para-
meters. For finite data lengths, it is also knownto have several local

maxima. In the case of dynamic systems, certain differential equation
constraints have to be Satisfied. The choice of a suitable search algorithm
is very important for the successful application of MLidentification.

The maximumlikelihood identification method, as implementedby SCI,
is an adaption and extension of the recent work of Astrom (Ref. 22),
Kashyap (Ref. 23) and Mehra (Ref. 24). It is capable of solving the most general
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identification problem, Including (I) systems governed by non-linear

differential equations of motion, (2) the presence of additive random

process noise in the equations of motion, and (3) random disturbances

corrupting the measurements of the system inputs and outputs. In this

section the development of the theory Justifying the use of the likelihood

function as an optimizing criterion for identification is developed and

the numerical algorithm for implementing the maximum likelihood identification

method is outlined. The development is first given for linear systems and

then extended to nonlinear systems.

4.1 Linear Systems:

Consider the llnearized aircraft equations of motion

(4.1)

where

x(t) ffin x i state vector (p, q, r, u, v, w, etc.)

u(t) - p x I input vector (6e, 6a, 6r)

w(t) = q x i vector of random forcing functions

Let the measurement equations be

where y(t) = Hx(t) + Du(t) + v(t)

y(t) = r x i output or measurement vector

v(t) = r x i vector of random measurement errors
(4.27

and

E { w(t) } = O, E { w(t)wT(T) } = Q 6(t - z)

where 8(t - z) is the Dirac Delta function.

Z { w(t)vT(z) } = 0

E { v(t) } = 0, E (v(t)vT(T) } = Z6t, T.
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It is assumed that the structure of the model is known. The

vector of unknown parameters in F_ G, F, H, Q, R and x(o) are denoted by

0. Thus 0 includes all the unknown stability and control derivatives,

noise variances and the initial states.

If a sequence of observations

system state with noise, the maximum likelihood estimate of

O, following the idea stated earlier, is given by

^

e = max p(YNIS)

8

where

Rule, an expression for

y(1), ........... ,y(N) is made of the

(4.3)

YN = {y(1), ..... , y(N)}. With successive applications of Bayes

p(YNI8) can be derived as

p(YN/e) ,,, p(y(1),.., y(N)/e)

'= p(yCN)[YN-I' 8)P(YN-1 IO)

= p(y(N)IYN_I, ®)p(y(N-l) JYN-2'' O)P(YN-2JS)

N

" e)
J=l

Since the logarithm is a monotonic function, the maximum likelihood estimate

can also be written as

0 " max [log P(XNl0)] = max log p(y(J)IYj_l,8

e 8 _=i

(4.4)

where log p(YN[®) is the likelihood function.
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If x(o), wCt) and v(t) are normally distributed, p(yCJ)iYj_l,e)'--

will also be normal and can be uniquely determined by computing the mean

and covariance. Therefore define

E{y(J)IYj_1, e} A=y(jlj_l )
(4.s)

and

cov(y(J)IYj_l,O}= Z((y(J)- y(jlj-l))(y(j)-Y(jlJ-I))T}

B(J]J-l)

(4.6)

With these assumptions, the term log p (y(J)[Yj_I,O) can be written as

-I
1

log p(y(j)IYj_l O) = Const.- -_-(y(j)-y(jlj-l))T B(j[j-l)(y(j)-y(jlj-l))

- log IB(J]j-'t)] (_.7)

The problem of determining the maximum likelihood estimate has now

become one of finding a way of calculating the conditional mean, y(J lJ-l),

and the error covariance , B(JlJ-I). These quantities, however, are precisely

the output of a Kalman Filter (Ref. 25) state estimator given 8. This filter

is designed to recursively process measurements one at a time, and, at each

point produce the minimum variance state estimate based on all the data

received up to that point.

The Kalman filter prediction and update equations can be derived as

follows :

For a more rigorous derivation of the Kalman Filter, see either Kalman (Ref. 26)

or Kailath (Ref. 27). Also note that the conditioning on G has been omitted

from the equations to simply notation.
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Initial Conditions: The Kalman filter is started with a priori

state estimate 3(010) and covariance P(010 ).

The state prediction is done using the equations of motion and

state update is done using the measurements.

Prediction Equations: At time (J-l), the Kalman filter has a state

estimate _(j-llj-i ) and covariance P(J-IIJ-I). It is required to

predict the state at time J. The resulting state estimate is denoted

by _(J lJ-l) and has a covariance of e(j lj-l). The relationship be-

tween the updated and the predicted estimates can be obtained by taking

conditional expectations on both sides of Eq. (4.1) and interchanging

the operations of expectation and differentiation. This gives

d x(tlj_l) _ (tlj-l) + Gu(t)dt =

(J-l)_< t < j

(4.8)

where the predicted value of the white noise w(t) based on previous infor-

mation is equal to zero.

A

The covariance equation for the predicted estimate x(t/J-l)

can be obtained by subtracting Eq. 44.8) from Eq. 44.1) and using

the covariance propagation equation derived in Bryson and Ho (Ref. 25).

d
d7 P(t[j-1) = F P(t[j-1) + P(tlJ-I)F T + rQrT (4.9)

Update Equations: The update equations for the Kalman filter can be

derived using a well-known property of the conditional normal distribu-

tions (Ref. 28), viz.,

E{ alb } ffi 7+ PabPb (b - b) (4.10)

pTc°v(alb) =Paa - PabPb ab 44.11)
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where a and b are normal random variables with

E{a} = a , E{b} =

coy(a) = Paa ' coy(b) = Pbb

E((a-_) (b-b) T } = Pab

Replacing a by x(J) with mean a = x(JlJ-l) and covariance

p = p(J lj-l) and replacing b by y(J) with mean
aa

= y(J[J-1) = Hx(J [J-l) and covariances

Pbb = HP(J[J-1) HT + R
(4.12)

Pab = P(j[j-1) HT (4.13)

we obtain,

A

x(J[J) = x (J[j-1) + K(J) (y(J) - R_(j[J-1))

K(J) - P(JlJ-I)H T (HP(JlJ-I)H T + R) -I

and

(4.14)

(4.15)

P(JlJ) = (I - K(j)H) P(JlJ-I) (4.16)

The quantity (y_) - y_[J-l) ) represents the new information

brought forth by the measurement y_). It is known as the "innovation"

sequence and has been shown to be zero mean, Gaussian and white (Ref. 29)

Denoting the innovations by u_), the likelihood function can be

written as

log p(YNle) ffi

N

_ 12 I { vT(j)B-IQ[j-1) u(j) + ipglBQ[j-1)[}

J=l

(4.17)
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where B(J[j-1) = HP(J[J-I)H T + R (4.18)

A

The maximum likelihood estimate 0 is obtained by maximizing

(4.17) with respect to O, subject to the constraints in equation

(4.8)-(4.9), (4.14)-(4.16). This is a very difficult optimization

problem. An approximation suggested in Ref. 24 simplifies the problem

tremendously. It is assumed that the filter gain K(J) and covariance

B(j lj-l) have reached constant values K and B. The vector 0 of un-

known parameters is now defined to include (in addition to F,G) K and

B instead of Q and R. Reference 57 gives a detailed derivation of the

relation between K, B and Q, R. Then

N

log p(YN]8) = 1 l(vT_)B-iv(j) + log[B[]- _ (4.19)

j=l

Maximizing (4.19) over B, produces

N

J'=!
(4.20)

A

where e is the ML estimate of unknowns of F, G and K.

the root of the equation

It is given by

N

I vT(j)B I _ = O.

J=l

(4.21)

where _(J)_a is calculated from Eq. (4.8) - (4.18). The root of (4.21)
^

is found by a Newton-Raphson iteration. Once a is obtained, R and Q

can be obtained from equations (4.9) and (4.18). In this way the non-linear

constraints imposed by the equations (4.9), (4.15), (4.16) and (4.18) are

avoided during optimization.

4.2 Nonlinear Systems

The approach to obtaining the maximum likelihood parameter estimates

for nonlinear models is conceptually similar to that for linear models.
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Consider a nonlinear dynamicsystemmodel of the form

x(t) = f(x(t), e, u(t)) + Fw(t) (4.22)

y(t) = h(x(t)) + v(t) (4.23)

where f(') and h(') are n x i and r x i vectors of nonlinear functions.

Also, w(t) and v(t) are Gaussian white noise sequences with zero mean

and covariances Q and R.

The evaluation of the exact maximum likelihood estimate involves the

calculation of the conditional probability p(y(J)IYj_I,8) as in the linear

model case. This would require an optimal nonlinear filter, which, to date,

is computationally unfeasible since a complete description of p(y(J)[Yj_1,8)

requires computing all its moments. As a result, it is proposed to use an

Extended Kalman Filter (Ref. 30) of the following form:

= f(x(tlj-l), e, u(t))

_(JlJ) = x(Jlj-l) + K(j)v(j)

v(j) = y(j) - h(i(J[j-1))

(4.24)

(4.25',)

(4.26)

The Kalman gain K(t) is calculated from equations (4.13)-(4.16) by

using the time varying matrices H and F, defined by

H(t) = _x[ (4.27)
x = lj-l)

F(t) = _xl (4.28)

= : ;:(JIJ)

Notice that the Extended Kalman filter linearizes the equations around

the latest best estimate of the state. More advanced filters such as Second

Order Filters, Single Stage Smoothing Filters, etc. (Ref. 31) can be used for

state estimation, but for the aircraft parameter identification problem, when

all the states and accelerations are being measured accurately, an Extended

Kalman filter comes quite close to the optimal nonlinear filter in accuracy.
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Kailath (Ref. 27) has shown that the density of the innovation u(t) tenas to

a Gausslan density as the sampling rate is increased. Thus, for high sampling

rates the likelihood function can again be written as

N

J -= log(YNlO) I _!2 I

J=l

_0T(J) B-I(J) v(j) + loglB(j) I (4.29)

The validity of the above two assumptions viz: high sampllng rates and accurate

measurements should be checked in practice for each application of this

method.

Remark:

The use of an Extended Kalman filter here is for state estimation only.

It is also possible to use an Extended Kalman Filter for simultaneous state

and parameter estimation (Refs. 21, 32). In the authors' opinion, this is not

desirable since the uncertainties in the states are much smaller than the

uncertainties in the parameters. Therefore, the assumptions of lineariza-

tion which are valid for state estimation are generally not valid for para-

meter estimation in the aircraft parameter identification problem. Moreover,

_he Extended Kalman Filter for simultaneous estimation of the state and the

parameters assumes knowledge of the a priori covariances which are unknown

for the parameters. This is one of the reasons why an Extended Kalman

filter typically gives unreliable confidence limits on the parameter

estimates (Ref. 21). The maximum likelihood method described here will be

shown to provide realistic estimates of confidence limits on a test case.

It has also been found to converge in several cases where the Extended Kalman

Filter for simultaneous state and parameter estimation failed to converge

properly due to poor a priori values for the parameters.
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4.3 Numerical Optimization Algorithm

The optimization algorithm described here for obtaining the maximum of

the likelihood function is the Modified Newton-Raphson or Quasilinearizatlon

Method. Determining an update to a set of parameter estimes 8 , which will

decrease the value of the likelihood function (cost), J, using this method in-

volves computing two matrices: the gradient of the cost with respect to the

aJ and the information matrix, M.
unknown parameters, a-_'

For the case of a nonlinear system with process noise, the likelihood

function, J, is computed using an extended Kalman filter. The gradient and

information matrix computation must therefore include at least the first order

partials of the Kalman gain with respect to the parameters. With the nonlinear

system model given by Equations (4.22)-(4.23), and the extended Kalman filter

by Equations (4.24)-(4.28), the gradient of J with respect to 8 is given by

where

and

aJ

ae

n

av(j) 1 T(j) B-I(j) aB(J)B-I_)T(j) B-I(j) ao - _ a8 (j) v(j)

J,=l

1 (j)_--_) (4.30)+ _ tr (B-I

av(j)) -H(t) _(jlj-l) ah (4.31)
ae = as ae

aB(j) = aN(J) p(j [J-l) HT(j) + N(J) aP(j lJ-I)HT(j)

ao k ae k ao k

aR
+ H(J)P(jlj-l) --

aek aek

Based on prior experience (Ref. 33), the convergence of other optimization

algorithms, including conjugate gradient and Davldon method, has been

found to be slower than that of the quasilinearization method.
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The recurslve equations for @P(J lJ-l)
B0 k

Riccati equations, with the separation into

are obtained directly from the

update at the measurement times

and prediction between measurement times again being made.

Prediction:

Prom Equation (4.9), the prediction equation for (j-l)

becomes

<t <J

@P(tlJ-l) = B__F p(tlj_l) + F @P(tlJ-l) + BP(tlJ-I) FT

@0k B0k @0k @Ok

_FT @r _q rT @rT
+_(_lJ_ _k+_ Q_+_ _°_+_Q_ (4.32)

Update:

The update equation, at the jth

from Equation (4.161

measurement point, is obtained

@P(JlJ) = (I-K(J)R) SP(JlJ-I) _ @k(j) HP(jlJ-1)
Bek sok sok

@H

K (J)_kP(jlji) (4. 331

where

@P(j lJ-l) HT [HP(J]J-1) HT + R] -I
@Ok

@HT HT
+ P(j]j-l) _k [HP(j[J-1) + R] -I

FB_, HT BP(J 'J-l)H T
- K(J) L._P(J lj-l) + H 30 k

_H T _R _+ HP(j lj-l) _k + _k (HP(j IJ-I)HT+R) -1
(4.34)
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The recursive equations for the term a_(J !J-l) defined as the sensi-
a8

tlvity equations and appearing in Equation (4.31), are obtained from the

update and prediction filter equations (4.24)-(4.25).

Prediction:

a_ af a_

_e--k = _e--k + F(t)_k ; j-1<_t < J
(4.35)

Update:

= Bek aek aek

These same sensitivity equations are used to compute the information

matrix, which is given by

11

avT(J)
_,& A a2j ffiE a@k

.1=1

av(J)_ T(j) B-I(j) BB(J) B-I(j av )k (J

av(J)
_B(J) B-I(j) __

vT (J)B-I (J) ao_ a@k

i I B-I-_tr aB(j) aB(j) I

(4.37)

Note that second order partial terms and several first order partials (of

matrix inverses) have been neglected. All the partial derivative terms appear-

ing in Equation 4.37 can be obtained via Equation 4.31.
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The update to the parameter estimates e, or step size Ae, is then com-
puted using the following equation

_/ (4.38)

Since M is the Fisher Information Matrix, M-I provides the Cram_r-Rao

Lower Bound on the covariance of the e estimates. The ML method approaches

this lower bound asymptotically.

4.4 Relationship to Output Error and Equation Error Methods

As stated earlier, one of the principal advantages of the maximum

likelihood method is that, under special circumstances, it reduces to the

output error or equation error method, both of which have been widely used

for extracting stability and control derivatives from flight test data.

For the case where there is no process noise present, i.e., w(t) = O,

the process noise covariance, Q(t), is identically zero. With P(0) either

equal to zero, (if the initial state estimates are known) or small, this

implies P(tlt-l)EO for all t after some initial transient (see Equations

(4.9)-(4.16)). The Kalman gain will then also be identically zero (Equa-

tion (4.15) and the innovations sequence reduces to

v(t) = y(t) - Hx(t)

for the linear case, and

_(t) = y(t) - h(x(t))

in the nonlinear case. In both cases _(t) is exactly the output error.

The only difference then between the maximum likelihood method and the more

classical output error method is the choice of the weighting matrix. In

the maximum likelihood method, it is given as R, the measurement noise
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covariance, or its estimate.

chosen as

N

1

J=l

In the maximum likelihood method, is is

v(j,_) T(j,8).

For the case where no measurement noise exists, the measurement noise

covariance R(t) is identlcally zero. For the case in which all the states

and their time derivatives are measured, the likelihood function is the sum

of squares of the equation error at sampling times. Thus, the ML estimates

are identical to the equation error estimates.

4.5 Identifiability and Uniqueness Problems in Extraction of Stability and

Control Derivatives

Although the maximum likelihood method discussed in the previous section

represents one of the most advanced identification techniques developed to

date, there still remain some basic problems associated with extracting

stability and control derivatives from flight test data. Most of these pro-

blems can be classified under the heading of "identifiability," which is re-

lated to the degree of excitation for the particular modes of the system under

investigation and the ability to identify the associated parameters. Identi-

liability also relates to whether the parameters themselves can be identified

or whether they can only be identified as part of a linear combination. This

section will discuss some of the symptoms and causes of identifiability pro-

blems, and a few of the methods which have been used to solve them.

4.5.1 Symptoms and Causes of Identifiability Problems

The most obvious symptoms of identlfiability problems are physically

nonrealizable parameter estimates and large associated error covariances.

Either of these symptoms may arise for a number of different reasons. If

the input sequence does not adequately excite some of the modes, or if the

Stability Augmentation System is operating, thereby suppressing some of the
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aircraft modes, the associated parameters may not be identifiable. If the

model chosen to get the input-output data is inadequate, the parameters of

that model may be forced to account for some major unmodeled effects. The

estimated parameter values may, therefore, be quite different from what aero-

dynamic theory and previous results may indicate. If there are large, un-

accounted for instrumentation errors or errors in the location of the e.g.

and the sensors, again non-physlcal parameter values may result. Finally,

such additional factors as too short a data length, local minima in the cost

functional and poor initial parameter estimates may also result in non-

physical parameter values.

Large error covariances principally result from poor input sequences

and attempts at identifying too many parameters. The first factor reduces

the sensitivity of the ouput to variations in some parameter values, and

the second factor causes linear dependencies between parameter estimates.

Since an extraneous parameter in the model does not, by definition, improve

or degrade the fit to the observed data, its estimated value will be of

no significance and the error covariance of the estimated value will be

large.

Probably the most common identlfiability problem encountered in

processing flight data results from parameter dependencies. This may

occur through a pair of parameters which always appear in the equations

of motion together, as with CM and CM. , or through a poor choice of
q

inputs such that some of the aircraft response variables are linearly

correlated, or it may occur through an overspeciflcation of the number

of parameters to be identified. In each case, the result of the

dependencies is a nearly singular information matrix, which when inverted

to obtain the step size in the parameter estimates, causes numerical

problems.

Additional numerlcal problems associated with a nearly singular

information matrix arise when the control input is expressible as a linear

combination of the aircraft response variables. This matrix singularity

results from the linear dependence between the partial of a response
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variable with respect to a parameter in the input matrix amd the

partials with respect to a parameter of the dynamics matrix. Since

the same singularity exists at each data point, the resulting information

matrix will also be singular. A second input related problem arises when

the input is of such a nature that the time histories of several of the

aircraft response variables appear highly correlated. All the elements

of the partial derivative of the output vector with respect to any one of

the parameters will be the same, introducing a singularity.

4.5.2 Approaches to Identlfiabillty Problems

Four different approaches have been used to alleviate identifiability

problems. These are:

i. Fixing Parameters - The usual remedy for parameter dependencies

has often been to fix some of the dependent parameters during iden-

tification. While this generally improves the numerical convergence

the choice of a particular parameter to fix and the value at which

it is fixed are generally not clear. Although it is possible to fix

the parameters at the wind tunnel or theoretical (DATCOM) values, the

estimated parameter values may depend upon these fixed values. In

those instances where the wind tunnel values are inaccurate or DATCOM

doesn't apply and no other a priori information is available, a better

way of dealing with the parameter dependency is needed.

2. A priori Weighting - Whenever a priori values exist for certain parameters

in a given model structure, they can be included in the maximum likeli-

hood method by using a Bayesian formulation. If the a priori values have

a Gaussian distribution, a quadratic term involving the weighted dif-

ference between the estimated parameter values and the a priori para-

meter values is added to the likelihood function. Depending on the

weights given to these differences, it is possible to force any of the

parameter values to the a priori ones. The a priori values for the
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aircraft stability and control derivatives are usually derived

from the wind tunnel estimates and theoretical calculations.

The weights, which are the most subjective part of this technlquep

signify the confidence in the a priori values. An alternate pro-

cedure is to successively reduce the weights at each iterationp

thereby discounting the dependence on a priori information. The

main advantage of this procedure is numerical since the information

matrix with a priori weighting is generally better conditioned than

the one without it. This procedure is a special case of Tychonov

Regularlzation used for solving an ill-conditloned set of equations (Ref. 34).

B Constrained Optimization - If, from practical or theoretical con-

siderations, a range of allowable values or relationships between

the stability and control derivatives can be specified, they can be

used as constraints on the parameter estimates to avoid non-physical

estimates. Such a procedure would require a constrained optimization

teehnlque in lieu of the Newton-Raphson optimization method normally

used (for the output error criterion). Including such parameter

value constraints will most probably also reduce the convergence rate.

o Rank-Deflcient Solutions - Without any of the above remedies, the

parameter identlflability problems will usually appear as a difficulty

with inverting the information matrix and obtaining accurate parameter

estimates and error covariances. This numerical problem can be related

to the spread in the eigenvalues of the information matrix. A perfect

dependency among the parameters should, strictly speaking, result in a

zero eigenvalue. However, since round-off and other numerical errors

prevent the matrix from being exactly singular, all the eigenvalues

will be non-zero with a spread between the smallest and largest elgen-

value being many orders of magnitude. In such a case, it might be

better to use a rank deficient solution for the inverse rather than
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a full rank solution (Ref 35). That is, the inverse to the information

matrix should be computed leaving out one or more of the smallest

eigenvalues. Each eigenvalue which is left out relates to a singular

direction in parameter space and, therefore, indicates a combination

of parameters which cannot be identified uniquely. (see section 5.3.6)

The maximum likelihood identification program described below has options

to use the above methods for solving identifiability problems. Further research

in this important area is badly needed if identification programs are to be

used on a routine basis for extracting stability and control derivatives. It

should be mentioned that two other topics related to identiflability (one of

which is discussed elsewhere in this report) are those of input design and

model structure determination.

4.6 Maximum Likelihood Identification Program

This section describes the computer program that was designed to

implement the maximum likelihood identification method for extracting

stability and control derivatives from flight test data. Three options

are provided for dealing with the identifiability problem: (I) a priori

weighting, (2) fixing parameters at a priori values, and (3) rank-deflcient

solution for the information matrix inverse. At the outset of an identi-

fication run one of these three options is indicated (including the weight-

ing matrix if a priori weighting is specified) and the program thereafter

runs automaticallyz Step size cutting (in the event of a cost increase)

and parameter bounding routines are always included in the algorithm, al-

though they can be easily rendered inactive, if it is so desired.

The flowchart for the maximum likelihood program is shown in Fig. 4.2.

The principal steps of the algorithm are all blocked out, omitting the

numerical procedures used to compute such quantities as the solution to

differential equations, matrix inverses, etc. The following paragraphs

briefly outline the functions carried in each of the numbered blocks and

how the logic progresses from block to block.
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(i)

(3)

(2)

READ IN:

(I) initial parameter values, Po (NP parameters)

(2) parameter bounds PL' PU

(3) observation and input control sequence Yl, ul (N data pts)

(4) initial process and measurement noise covarlance estimates ,

Q and R, and state error covarlanee.

SPECIFY:

(i) which parameters are to be fixed (if any)

(2) whether a priori weighting is used (if yes, supply

weighting matrix).

(3) whether rank deficient solution is to be used.

Compute cost associated with a priori parameter
estimates:

J = I vT(j)BI(j)u(J) -log [ B(J)

j=l

I
'Solve the following equations simultaneously (using
updated parameter estimates)

,)

(i) Time history of aircraft states via Kalman

or extended Kalman filter (equations 4.24 - 4.26)

(2) Kalman gain time history (equations 4.9, 4.15,
4.16, 4.27, and 4.28)

^

_x
(3) Time history of sensitivity equations

(equations 4.35, 4.36)

• (4) Time history of additional partials _P(J[J-I)

_Pk

' _ (equations 4.32 - 4.34)

_Pk _Pk

FIGURE 4.2 FLAXIHUM LIKELIHOOD PROCRAM FLOWCHART
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(4)

'(5)

(6)

1
Compute

(1) gradient vector IXI (equation 4.30),

(2) information matrix M (equation 4.37)

1

YES

I Eliminate those rows of the gradient, and those

rows and columns of the information matrix

associated with the fixed parameter.

I ompute eigenvalues h i and eigenvectors V i
of M (I i is largest, A N is smallest)

I
IS RANK DEFICIENT INVERSE FOR M DESIRED? ilqO I

i I YES

i
K ffi NP I I SPECIFY K ffi minimum no. of eigenvalues to be retained

t i
lillgil_l IIIIl'illll II_oIOlill_ Illll_lll IIIOla _ I I

i
i

!
I

(7) i

I

i
i
i
i
i
i
i
I
m

II,

Compute : t

(1) Rank deficient information matrix inverse --M-1 ffi E )'iI- VivtT
if1

(2) Parameter step size, APt = -M-I DJ

(3) Cost associated with new parameter values

*" P + APtPt

N

1
___ uT(j)B-I(j)u(J) -log [ B(J) I

J=_

J=1

+ (P£ Po )T W(P£ - Po )

(W -= 0 if a priori weighting NO__T_Tused)

FIGbT_ 4.2 (CONTINUED)
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(9)

(8)

(10)

l

i - NO ! IS Cost, J, greater than cost from previous iteration? 1

! - - 1YES

Do minimization of J £ times: NC - I, ...

* 1

i - (2) recompute cost

=_ IF cost, J, still greater than cost of previous iteration,

| increase NC by i.

_|I lilmil_lilililimlil__

I *From amongst (PN ' APN )'

.retain pair with lowest cost; define as P

(ii)

r

(12) I

I

]

For new parameters p*,
violated

(I)

(2)

(3)

(PN-I' APN-I) .... (P_, APK)

, AP

are any parameters constalnts

I YES

if any component of P (previous parameter estimate set)
was on a constraint and AP took it into infeasible
region, set that component of _P E 0

i

compute new P = P + AP

For each component of P* beyond constraint boundaries,
compute ratio

(4)

DSTI =I API - distance beyond boundary
API I

if none are beyond boundary, go to step (12)

find smallest DST i _ DST

replace parameter estimates P with new set of estimates

P + AP'DST

i
return to step 3 to begin new iteration

FIGURE 4,2 (CONTINUED)

mlili
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Tb_ initialization procedure for the maximum likelihood identification

method, indicated in blocks (1) and (2), consists of specifying a set of

a priori parameter values, including the measurement and process noise

covarlances and, if desired, a set of upper and lower bounds for each

parameter. The observations and input control time histories are then

read in and stored. Since the maximum likelihood method is a batch pro-

cessor, it will use the entire data record for each iteration. The ini-

tialization concludes by specifying which of the several options are to

be used: (i) fixing parameters, (2) a priori weighting, (3) or rank

deficient solution for the information matrlx inverse.

With block (3) the first iteration begins. Using the equations given

in Section 4.3 for the nonlinear system equations, the extended Kalman

filter, the sensitivity functions and all the required partial derivatives,

the time history for each of these quantities at each data point is com-

puted. These differential equations can be solved using any one of a

number of numerical techniques, e.g., Runge-Kutla. However, the majority

of the computer time for each iteration will be consumed in solving these

equations. When there is no process noise, Denery (Ref. 36) has shown that by

using a transformation some of the sensitivity equations need not be evalu-

ated, but rather can be expressed as a function of the others. The number

of differential equations _¢hich need to be solved is thereby reduced.

In block (4) the time histories of the quantities computed in block

(2) are combined to form the gradient, D J, and the information matrix, M.

Up to this point, all the computations can be performed considering a

very complete and general set of parameters to be identified. This set

may, however, be more general than needed for a particular application.

For example, it may not be desirable to identify the rudder derivatives

if there is no rudder input. If this is the case, the components of

the information matrix and gradient due to the parameters which are not

to be identified (thereby being considered fixed) must he removed. Follow-

ing through the computation of DJ and M, this can easily be done by
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simply deleting the rows of DJ and' the rows and columns of M associated

with the fixed parameters. This is performed in block (5).

Many of the computational problems associated with the Newton-Raphson

optimization technique are involved with the large spread in the elgen-

values of M. Perhaps the most exact way of computing M -I is therefore

to use the eignvalue - eigenvector decomposition. This decomposition is

performed in block (6). The eigenvalues and eigenvector are also

required if a rank deficient inverse for M is desired.

The second program option consists of specifying if a rank dificient

inverse is to be used, and if so, specifying, in addition, the minimum

number of eigenvalues which are to be retained in computing M -I . Note

that if a rank deficient inverse is not desired, this minimum number

is Just set equal to the total number of parameters.

The logic for determining the rank deficient M is given in blocks

(7) - (9). For each rank from the minimum to the full rank, the

appropriate number of smallest eigenvalues are discarded and the information

matrix inverse is computed. The associated parameter step is calculated

and the likelihood function value is determined using the new set of

parameter estimates. This involves computing the aircraft state and

observation time histories and deriving the innovation sequence. Note that

the third option enters in block (7) in the specification of whether a

nonzero a priori weighting matrix is to be used.

Blocks (8) and (9) are concerned with the solution where the cost

determined from the new parameter set is greater than the cost of the

previous iteration. (If this is the first iteration, the previous cost

is that associated with the a priori parameter estimates). When the new

cost is higher, the parameter step size is cut in half and the cost

reevaluated. If the new cost is still larger than the cost from the

previous iteration, the step size is cut in half again. This same procedure

is repeated a given number of times. The reason for this step size

cutting is the nonquadratic nature of the likelihood surface.
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This same step size cutting routine can be carried out for

the rank deficient solution procedure. The end result is

(k) sets of parameter estimates, each one resulting in some value of

the likelihood function. In block (I0), the set of parameter values

and step sizes associated with the lowest cost is picked out and

retained. The other sets of parameter values need not be saved.

The final option of the maximum likelihood program is to alter the

parameter step size if any of the parameter constraints are violated.

If this option is not desired, the parameter bounds are simply set to

very large values. The routine for computing the optimal step size

without exceeding the parameter constralntslnvolves four calculations.*

The first calculation checks the individual parameter values to see

which ones are on a constraint. If the parameter step associated

with any of these parameters results in violation of the constraint

boundary, that step size is set equal to zero. In the second

calculation, the new set of parameter estimates are computed, using

the modified step size (some elements are zero).

In the third calculation, each component of the new set of

parameter estimates is compared with the constraint boundaries. For

any individual parameter value which is beyond the boundary, the

absolute value of the ratio of the allowable parameter step to the

actual parameter step is computed. This ratio is exactly the factor

needed to have that particular parameter value fall on the constraint

boundary. The smaller that factor, the farther beyond the constraint

boundary the new parameter estimate would have been. In the last

calculation, the smallest factor from among those computed for the

individual parameter estimates is determined and retained.

* This procedure is based on the Generalized Reduced Gradient method

of Abadle (Ref.37).
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The final block (12) of the algorithm involves multiplying all the

parameter step sizes by the smallest factor determined in block (11) or

by I, if the constrained otlmlzation option was not chosen. If the

option was used_only one additional parameter estimate will be on the

constraint boundary. All other parameter estimates besides the ones

with zero step sizes will be within the constraint boundaries.

The computation of a new step size for parameters marks the end

of an iteration. To begin another iteration, these parameter values

are used in the computations of block (3), and the cycle is restarted.

The original cost now becomes the cost associated with these new

parameter estimates.
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V

RESULTS OF IDENTIFYING AIRCRAFT STABILITY AND

CONTROL DERIVATIVES

This section discusses in detail, the experience and results of applying

the maximum likelihood identification techniaue to simulated and real flizht test

data from three different aircraft. Included will be a discussion of the

problems that were encountered and all the techniques that were used to

alleviate them. Wherever possible, the cause of the problems is also

spelled out along with possible implications for flight test procedures.

The first data that was used was from a computer simulation of

X-22 VTOL aircraft. The aircraft model was highly non-linear and the

data included process noise as well as measurement noise. Experiments were

run with different input sequences and different measurement noise levels

to investigate their effects on the parameter estimates. In all, 23

parameters were identified, excluding the measurement and process noise

covariances, which were assumed known.

The second case involved actual flight data from an HL-10 lifting

body. The digitized data, comprising approximately six and one-half

seconds of flight, was supplied to SCI by NASA-Edwards FRC. A linear

aircraft model was assumed in fitting the data and, in all, 20 parameters

were identified, including the measurement noise covariance and the

initial flight conditions. The data was assumed not to contain any wind

gust (process noise) effects.

The third set of data, also supplied by Edwards FRC, was from an

M2/F3 lifting body. This data, covering approximately eight seconds of

the flight test, did contain wind gust effects and represented

a test of the maximum likelihood technique in reducing flight data which

had not been successfully reduced by the output error technique. In all
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22 parameters were identified, including the measurement noise covariance,

the parameters (time constant and driving noise covarlance) of a wind gust

model and the initial flight conditions.

5.1 X-22 Simulated Data

At the time this contract began, the maximum likelihood method had

been applied to simulated X-22 data, containing the effects of gusts, with

very promising results. However there remained several important problem

areas which needed further investigation and improvements to be made to the

existing program. This section will outline these problem areas, including the

method of approach, results, and conclusions.

5.1.1 Generation of X-22 Simulated Data

The model of the longitudinal motion of the X-22 is given in Appendix

A. These equations can be put in the nonlinear form

x_'= f (x,c,p) + g (x, p) v
where

x = [q, @, u, w] T is the 4-dimensional state vector

(q_ pitch rate, 6_A pitch angle, u-A longitudinal velocity, w_ vertical

velocity)

p is the 23 x i vector of unknown parameters (consisting of

the coefficients of the polynominal expansion in u of the

derivatives Mo, Mw, Mq, M_, Xo, Xw, X_, Zo, Zw, Z_)

c is the vector of deterministic control surface deflections and biases

= [i, _es IT (_es _ elevator deflection)

v is a 3-dimensional white, Gausslan process noise with mean

O and covariance Q.
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The elements of the g matrix are obtained from the matrix of

3f
first partials _x and, therefore, the parameters and states

appearing in f also appear in g.

The measurement equations are

Z

x

q

nx I

X

6 + qw + g sin O

- qu - g cos 0

m

."I
n 5

+
n6

n 7
m . i

where

ni , i = i,. ••,7 are independent, white, gaussian measurement

noise samples with the properties E{n_t} = 0 and E{_I = R6ts

Substituting for &, _, and 5, however, introduces, process noise

into the measurement equations. The measurement equation can

then be rewritten as

Z _

_x-

I f'

+n+

where f' and g' are made up of specific rows of f and

g, respectively• This gives rise to a correlation between the

process noise and the measurement noise now consisting of the sum of

the vector _ and _ X.
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With the specification of an elevator deflection sequence, _es' and

the process and measurement noise covarlances, Q and R, the data, z, could

be generated (using 4th-order Runga-Kutta integration of the nonlinear equations

of motion). For each trial approximately i0 secs. of data was used, with a

sampling rate of 20 per sec.

5.1.2 Program Description

The program that was initially used to extract the stability and

control derivatives from the simulated data consisted of basically two

parts. The first part was a least squares start-up routine (Ref. 13)

which generated an initial estimate of the parameter values. This

least squares technique is an equation error method which, in one pass

through the data, obtains parameters estimates that minimize the

following criterion

rain (x--i - fi(x' P)) 2 i=i,..,4
-- ,

for each derivative xi which is measured or derived. Since, in the

X-22 simulation, _, n and n were measured, it was first necessary tox y

express these quantities as linear functions of the parameters to be identi-

fied. From Appendix A it is possible to write _ as a linear function of

the parameters (polynomial coefficients) in the derivatives Mo(U), Mw(U) ,

M (u) and M_ (u); n as a linear function of the parameters in X (u),
q es x o

Xw(U) and X 6 (u); and n6 as a linear function of the parameters in Z (u),
es o

Zw(U) and Z6 (u). Since no parameter appears in more than one expression,
e8

a unique least squares estimate can be obtained for all the parameters.

The second part of the program was the maximum likelihood

identification technique in a form designed to identify the parameters

of a non-linear model when both the process and measurement noise co-

variances, Q and R, are known. The least squares parameter estimates were

used as the initial conditions for the first iteration through the data
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of the maximum likelihood routine. These estimates are updated with each itera-

tion, untll the algorlthm converges. However, since one iteration through

the data of the maximum llkellhood technique required I minute of UNIVAC 1108 CPU

time, only a few iterations were used.

5.1.3 Limitations of Previous Results

The first limited trial of the maximum likelihood identification

technique applied to the problem of extracting aircraft stability and

control derivatives was on simulated X-22 VTOL data supplied to SCI by

Cornell Aeronautical Laboratory. The complete data set consisted of four

cases; two without process noise and two with process noise. In each case

a single step input was used to generate the data. For the no process noise

cases 2A and 2C, satisfactory estimates were obtained for all parameters except for

X 6 and Z 6 derivatives. For both the low process noise (2B) and moderate process

noise (2D) cases, the errors in all the identified parameters were much larger.

However, when a multistep input sequence, which supplied much more excitation,

was used, the results for the process noise case improved greatly. It soon

became apparent that the quality of the parameter estimates were very "input"

dependent.

As outlined in Section4.3 , the calculation of the update in the parameter

estimates involves the computation of the gradient ___JJ,and the information matrix

_p

_2j, where J is the likelihood function (Eq.4.29). These quantities in turn in-

volve solving a differential equation for the sensitivity matrix _ (i/i-l),
_P

where _ (i/i-l) is the output of a Kalman filter. Since the equation for the

state estimate error covariance, P (i/i-l), does not reach steady state and

involves the unknown parameters, the partial derivatives of P (i/i-l), and the

Kalman gain W i, with respect to p should be included in the computation of

_J and _2j .(See Appendix B) These were neglected in the earlier X-22

_p _p2

5O



identification work. It was orglnally thought that the lack of monotonic

convergence of the identification algorithm could be attributed to these

extra partials being neglected in the computation of the partial derivatives.

As noted earlier the accelerometer measurements introduce process noise

into the measurement equation, thereby correlating the total effective

measurement noise with the process noise. This correlation which effects

the equations of the Kalman filter and, therefore, the computation of the

sensitivity matrix, was not accounted for in the earlier application. There

is an additional correlation between the g(.) function in the dynamics equation

and the g'(.) function in the measurement equation since both are a function
^

Of the state estimate, x (i/i-l). It was originally thought that this might

also have a significant effect on the parameter estimates and on the standard

deviations supplied by the Cramer-Rao lower bound.

In both the data supplied by Cornell and generated at SCI the process

noise and control were kept constant over an integration step. It was important

to distinguish the cases where the process noise changed value before or

after a measurement. In one case there would be a correlation between the

measurement noise at a sampling point and the process noise during the pre-

ceeding integration step while in the other case the ocrrelation would be with

the succeeding integration step. This difference, though subtle, is important.

All these areas were investigated with the objective of determining the

effects, on the parameter estimates and standard deviations, of different

modifications. The following description of the results is broken up into

separate sections, each one involving a different area of investigation.

Included in an accompanying table are the parameter estimates and standard

deviations resulting from each change in the algorithm. These standard de-

viations are actually lower bounds on the actual values and are obtained from

the diagonal elements of the matrix/_2j_ -I. Also noted, in each case, is

the number of iterations of the algorithm used in obtaining the results.
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5.1.4 Comparison of Results with Sinsle Step and Multi-Step Input Sequences

The initial processing of the data supplied to SCI by Cornel Aero-

nautical Labs resulted in unsatisfactory parameter estimates both for

the low and moderate process noise cases, as shown in Columns i and 2

of Table 5.1. Since it was already known that the input sequence shown

in Fig. 5.1, used to generate the Cornell data did not sufficiently

+1.0

0.0 _ ![RIM
-1.0

TIME (SEC)

t I I '1 I I I I I>
2 3 4 S 6 7 8 9 10

FIGURE 5.1 INPUT SEQUENCE USED IN GENERATING COP,NELL DATA

excite all the modes of the system to allow adequate identification and

since there was considerable uncertainty already as to how this data

was generated, SCI programmed its own data generator using the equations

of motion in Appendix A. The elevator deflection sequence used by SCI

in generating the X-22 simulated flight data is shown in Fig. 5.2 and

the process and measurement noise standard deviations are given in

Table 5.2.
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TABLE 5.1 X-22 ZDEHTTFICATION RESULTS

IParaameterl I | Case 20 2: Case 2B 3 : Case 2B 4 : Case 23
After After ull in8 SCI WZth

In|flaX |nlt fal J'r,ul ¢ |eta p Forvord

COet J Ch_n_ee Ch.ln es Correlation
3,3L27 3.)7_$ 3.5388 3. $/,99

-. 176 -1.632 -°835 -. 159 -.206

-.000355 .00429 .O02U -.O004.6_ -.000284

My(: ) -.1 -1.268 -.671 -. 09t, 7 -.137
-.00317 .00558 .000009 -.00321 -.0027&

Hq(1) -.497 -2.0721 -.99$ -.,89 -.S20
u -.00103 .00434 .00278 -.00114 -.000814

(:) 18.66 -11.85 ,,,5 18.38 18.17
K6 .0669 • 311 • 179 .0708 • 0734

/ 12/ 18.3 3.5.80 23.01 _ 18.88 19.41
X u -.0917 -.352 -.160 -.103 -.110o

v -.G003 .000659 -.0000539 -.00024 -.000228

(_) .2211 .0162 .176 .220 ,2085
rv -.00159 -.0000_1 -.0OJ22 -.00159 -.00143

(:) -.778 8.$86 -.976 -.691 -1.011
x4 .0164 -.0521 .0202 .0171 .0212

/1_-32.17 '5.95 -31.22 -35.15 -2,.08

,_u ,) .91 -.1367 .511 .969 .825

_tu2/ -.007 -.0017 .00568 -.00728 -. 00669

(_) -.2939 -1..320 -,$99 -.272 -.361
Iv -.00287 .00516 --000399 -.00314 -.00213

(:) -.351 20.6 -11.26 -.67`3 -1.143
s4 -.0167 -.122 .106 .0200 .O269

Mo. of' lteratLons .1 2 2 2

Cost ji
.$296

Standard

Dev/at Ion8

1.104 .254 .0352 ,0371

• O0/+O$ .000996 • 0OO145 .0001_4

_(1) ,9, .8 +2,1 +2,900,,, 00_. +., _0.,
,,(_) -, .., 0., .0.00.371001.3,000,,20.1.
,,(:) 1_.6 18.. .279 .2..,,2 .1+ .,_6 .00,1,
(i,) ++ "+ ++ ++XO .276 .0688 .O1.32 .0135

.0009_;0 .000241 .O000S .0000_,31

X(_) .17`3 .0422 .0105 .OlO]

• 00142 .000.151 .0000899.0000893

s., (:) 41.0, '.686 .11)9 .11212

.3173 .0596 .001134 .0011,

so+ 1.276 .283 .0427 .04486

• 00,28 .000972 .000172 .000181

'v(_) .779 .16, .032`3 .0334

• 00657 .001,2 .000321 .00q330

• 4(1 t 271.0 '1,10 .`388 .398
u

1.21 • )189 .004`31 .0046

5 : Case 20 6 _ Case 211

With With

Coaltlnt 8 Constant •

and Cot relat|oa

3.5.355 3 _17

31.47 )2.02

-.209 -.224

-.G00292 +. 000174

-.148 -.166

-.00268 -.00235

-.SO0 "-.436

-.000975 -.00182

18.15 18.11

.0733 .0758

17.87 17.97

0.0869 0.0874

-.000`3: -.000.316

.2233 -.223

- • 0015 - • 00160

-,896 -,875

• 0199 .0196

-30.19 -28.0.3

• 879 .813

-.O0692 -.0066

-..3.397 -..356

-.00233 -,00213

-1.136 -1.11

• 02697 +. 0271

2 2

.81S8 .9061

L

2.M) 3.$01

• 0418 .0573

• 000171 .00023$

• 0299 .0399

• 000279 .000371

• 0164 .0157

• 000157 .00017`3

• `3359 ..3368

•00361 .00356

• 7890 1,010

• 0127 .0163

.0000508 .0000660

.00919 .0116

• 0000857 ,000109

• 1073 .224

• 00U6 .00134

&.667 6.533

• 0767 .I057

• 000299 ,000428

.0_45 .0749

• 000507 .000696

• 636 ,692

• 00688 .00737
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TABLE 5.1 CONTII_UED

_1. Cne 2I !
With

Some Added
_JctlIXe

$.$76Y

_3.58

-.261

-.000035g

-.157

°.00247

-.502

-.00102

18.04

.0752

19,17

" -.)09

-.000221

.215

-.00150

-°$$2

.0207

-|5.88

.196

-o006$6

-.:M_9

-.00196

-1,213

.0289

:t

.5_29

8 z Cane 2D ! 9 s CaN 2D
Vich With

Constant I Constant $
No Added lud Add
rllCtllll IPlct tll

3.$368A 3.6949

47,291 76,69

-.427 -1.049

+.000295 .00345

-.421 -.583

.0000073 .00193

-.5068 -.321

-.000826 -.00345

15.92 17.79

.1003 .0807

16. _g 13.$0

-.0_,93 -.0319

- .000449 -.000449

.228 .2764

-.00159 -.00191

-1.402 -.£61

.0261 .0181

-14.18 2S.5i_,

.536 -.179

-. O061g -.0024$

-.634 -og65g

.000741 +.00389

-4o618 -1.146

.0703 .0278

2 2

22.893& 23.167

14.06

.2289

.000534

.1(;28

,001$1

,0760

.000824

1.706

.0181

4.270

.0688

.000217

.0498

.000462

.S4cl ..

.00581

2$.27

.406

.00163L

,2e#51

,00273

3.231

.03443
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FIGURE 5.2 MULTISTEP INPUT

TABLE 5.2 STANDARD DEVIATION OF PROCESS AND MEASUREMENT NOISE

gusts (process noise)

measurement noise n
u

n
w

n O

n
q

n
n

x

n
n

z

no

q

Standard Deviation

Low Moderate

1.0 fps

1.0 fps

.2 deg/sec

0.5 fps

0.075 fps

.03 deg

.01 deg/see

,001 g

005 g

D025 deg/sec 2

5.0 fps

5.0 fps

1.0 deg/sec

2.5 fps

.375 fps

.15 deg

.05 deg/sec

.005 g

.025 g

.0125 deg/see 2
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The initial state estimates used in the Kalman filter were set equal

to the state measurements observed at the first data point, i.e.,

_i (I/i) = z i. Since these measurements consist of the true state

_i(1) plus noise, the error covariance P (i/i) is given directly as

P (i/i) = E {(x (I) = __ (i/i)) (x (I) - __ (i/i)) T }= dlag{ RII, R22,

} where Rii is the ith diagonal element of the measurement noiseR33, R44

covarlance matrix, R.

The effect of using the SCI data generation program with a multistep

input sequence instead of a single step input sequence can be seen by

comparing Cols. 2 and 3 of Table 5.1. The parameter estimates are greatly

improved and the standard deviations are reduced. This enhanced ability to

identify the parameters is attributed to the fact that the more varied the

input sequence, the more the system modes are excited and the higher is the

signal-to-noise ratio at the output.

It is important to realize that the results as shown were obtained

for only one noise sequence, and therefore, although the parameter esti-

mates improved considerably, the parameter estimates by themselves are

not sufficient for comparison. Neither are the costs, themselves,

since changes in the noise sequence will influence the costs.

As will be seen in the later areas of investigation, some of the para-

meter estimates improved as the result of some change in the algorithm and some

did not. This is almost always the case, and unless the individual relative

effect of the parameters on the cost is known, it is very difficult to say

on the basis of only a few of the parameter estimates improving, that the

algorithm itself is improved by any change. The criterion that is more

suitable for comparison is the standard deviation of the parameter estimates.

A lower bound on the standard deviations is obtained from the inverse of the in-

formation matrix and this is adequate in many cases. However, if the differences

in standard deviations are small, the Cramer-Rao lower bound may not reflect

these differences.
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5.1.5 Comparison of Forward and Backward Correlation

The next area of investigation involved the effects on the parameter

estimates and standard deviations of the type of correlation between the

input and output noise sequences. The original Cornell data specified that

the process noise was kept constant over an integration step. This meant

that whatever correlation existed at the measurement times (note that the

measurements are taken at discrete instants) also existed throughout the

entire integration interval. The SCI multlstep data was first generated with

the accelerations 4, n x and n being calculated using the process noise from
Y

the previous integration step and the control, which was also held constant

over an integration step, from the next integration step. Figure 5.3 below

graphically shows when the values of vl, the process noise, and 61, the

control, were changed in relation to the measurement instances.

v i

6i+i

/
Measurements

vi+2

6i+2

_ Process Noise

-_-- Control

FIGURE 5.3 v AND _ ORIGINALLY USED IN THE CALCULATION OF q, n , n

(DOTS INDICATE THE INTEGRATION TIME POINTS) x y
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This seemedinconsistent with the way correlation betweenprocess and

measurementnoise is usually represented in state space models. For example,

the discrete analog of the continuous time representation

is

_(t) = Fx(t) + G v(t)

y(t) = }Ix(t)+ n(t)

where _,F and G,P are related by T, the sampling interval. In this

model, v k and n k are correlated, i.e. the process noise during

(tk, tk+l) is correlated with the measurement noise at tk. The

correlation between n k and v k effects Xk+l, not x k. Similarly, Xk+ I

is calculated using 6k (the control at time tk). In continuous time this

means that the correlation between v(t) and n k must be during the

interval between tk and tk+ I. In addition, the derivative _(t) at

time tk must be calculated using the control that existed between tk_ I

and tk. Therefore, _, n and n should be calculated using thex Y

process noise that will exist in the next integration step and the control

that existed in the previous integration step, as in Fig. 5.4.

i

Vi+l

vi+2
•:_=_- Process Noise

61+i

_--_ Control

n
FIGURE 5.4 v and _ USED IN CALCULATING OF q, n x, Y

AFTER CHANGE
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Note that the correlation between measurement and process noise has changed

from a backward correlation to a forward correlation, i.e. the measurement

noise at the sampling instant is now correlated with the process noise during

the succeeding integrationinterval_ This forward correlation, if unmodeled

with effect the (forward) Kalman filter operation while the backward correlation

will effect a second (backwards), smoothing run through the data. In an actual

application with continuous time dynamics and measurements, this problem will not

arise. However, if discrete measurements are recorded, the type of correlation that

exists will be an issue, and for data generated by a physical system the forward

correlation is the more natural.

The effect of using the forward correlation in the data generation

and then identifying the parameters, although not accounting for this forward

correlation in the Kalman filter, is shown in Cols. 3 and 4 of Table 5.1 (for

the low process noise case, 2B). Almost all the parameter estimates have

degraded, offset by an accompanying slight increase in standard deviation.

These results indicate that if forward correlation (the type normally used in

computer models of discrete systems) is not modeled, it can have a detrimental

effect on the quality of the parameter estimates.

5.1.6 Additional Performance Index

In Col. 4 of Table 5.1 a new performance measure is introduced,

labelled J'. This represents the unweighted mean square error in

estimating the output, given by

N
j, _ 1 ^

2-N i_l[Zi - h(xi/i-l' _)]T [zi - h(_i/i_l ' _)]

J' was introduced as another means of comparing the results of the

different runs and differs from J by the fact that changes in the Kalman

filter only effect it through the state estimates xi/i-l" It was not

substituted for J in the identification algorithm since it does not weight
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the various state estimates and is not the likelihood function. As was

pointed out earlier, the weighting matrix used in J was a function of
the Kalmanfilter covariance and therefore varied as different changes

or additions were madein the filter.

Experience with the algorithm and the two costs, J and J', indicated
that J' wasmore sensitive to the parameter estimates than J, which

always appeared to be in the range 3.5 to 4. However, this is to be

expected since, if the parameter estimates are bad, the state estimates
will likewise be bad and the associated state estimate error covariances

will be large. Theweighted residuals, which are inversely proportional
to the state estimate error covariance, may therefore changevery little.

J', on the other hand, has no weighting, and therefore reflects the
absolute accuracy of the state estimates.

5.1.7 Accounting for Correlation Between Process and Measurement Noise

The initial attempts to account for the correlation between the

measurement and process noise were not successful either in reducing

the cost J or in improving the parameter estimates. It was decided that

part of this problem was due to the fact that the noise term g(xi).v i

appearing both in the system equations and the measurement equations, depends

on the state xi and gives a long-term correlation. For this reason, it was

decided to alter the system equations to include a constant g matrix,

calculated from the initial control values, the nominal state values and

the actual parameter values.

The identification program was first run without accounting for

the process noise-measurement noise correlation, in order to get a

new standard for comparison. As shown in Column 5 of Table 5.1,

many of the parameter estimates were worsened and the J' cost increased

slightly. The fact that the J cost decreased slightly can be attributed

to the fact that the weighting matrix is a function of the g matrix.

Also the worsened parameter estimates were not,in all cases, offset by

increased standard deviations.
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The improvedaccuracy of the parameter estimates with the non-

constant g matrix can be attributed to the fact that the parameters

of the g matrix account for the system gain factors and are therefore
easily identifiable. Since, in the original system model, the same
parameters appeared in the f and g matrices, the parameter estimates
were overall improved.

It was agreed that, although the constant g assumptionwas a
large change from the original problem, it did not represent a

departure from reality. As can be seen from the system equations, the

g matrix was originally constructed from the linearized f (',')
matrix, the motivation being that the process noise would then
enter the dynamical equation linearly.

With the constant g assumption, the correlation betweenprocess and
measurementnoise was accounted for by adding the following terms (indicated

by |_| !I) to the identification algorithm. (See Section 4.3)

T
Defining Si = E{v. n.} to be the measurementnoise and process noise

_th m Icorrelation at the m measurementtime:

Kalmanfilter state prediction:

- I R-I I
x = f(_) +I g Si_ 1 [zi-i - h(xi-i/i_l)] I

L _!

Kalman filter covariance prediction:

= T gTPi/i-i _i-i Pi-I/k-i _i-i + g Q (AT)2

R-I T
I - g Si_ 1 Si_ 1 gT(AT) 2 I

L l

61



"- 7

where 0i_ I = I +_x _AT- I g Si-i _P + 1I
L

x"xi- i / i-i x=xi-i / i-I

Sensitivy equations:

I
 pj' Vp+Tp - ,gsi-i Tx  +Tp ,

I __I

x--&i_i/i_1

ti_ I < t < t i

The resulting parameter estimates and cost are given in Col. ,6 of

Table 5.1. Comparing these results with those of Col. 5 it is seen

that, while some parameter estimates improved, others did not. The overall

cost J remained the same, while J' decreased slightly. An important

point is that the standard deviations for almost all the parameters increased.

This implies that, with the initial set of least squares parameter estimates

as good as they are, the inclusion of the terms accounting for the input/output

noise correlation does not gain much by way of the parameter estimates.

However, with these correlation terms included, the standard deviations

come out to be more realistic, in view of the differences between the actual

and estimated parameter values. All this is not to say, however, that for

a less exact set of initial parameter estimates, the correlation terms won't

improve the algorithm performance.

5.1.8 Inclusion of Additional Partial Derivatives

There were two principle motives for adding the additional first order

partial derivative telnns of the state covariance matrix to the identification

algorithm. The first was that they would be required if Q and R were to be

identified, since they both appear explicitly in the equations for the state

estimate error covariance. The second motive was that the cost J, instead

of monotonically decreasing with each iteration, was oscillating.
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A possible cause of this was that the gradient direction wasbeing
calculated incorrectly due to the fact that the neglected partial

derivatives have an appreciable effect on the gradient of the likelihood
function in the vicinity of the minimizing set of parameter estimates.*
It was necessary, therefore, to investigate the importance of these
extra partial terms in identifying the system paramters.

The inclusion of the additional first order partial derivatives into

the identification algorithm presented special problems due to the nature
of the X-22 model. Since the g matrix is a function of both the states

and of the parameters, the derivative of the g Q gT term (appearing in

the covariance equations) with respect to p must be included. This is a

particularly lengthy computation. A first attempt to include all the
additional partials except those of the g QgT term is shownin Col. 7 of

Table 5.1. Comparingthis with Col. 4 (since constant g was not assumed), it
is seen that both costs J and J' increased slightly and someof the parameter
estimates, themselves, are slightly degraded.

Twochangeswere then decided upon. The first was that case 2D

(moderateprocess noise) would be used instead of 2B (low process noise).
The secondwas that the g would again be modeledas constant.

The first changewasmotivated by the desire to see larger variations

in the costs. More process noise would makethe initial least squares
parameter estimates worse and therefore the effect of the additional

partials would, potentially, be the greatest. The second changewas
motivated by the fact that with the constant g assumption, partials
of the g Q g terms are identically zero.

A secondpossible cause was too large a step size, which wascorrected
by halving the step size along the calculated gradient direction whenever
the cost J, increased.
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Column 8 of Table 5.1 gives the parameter estimates, cost and standard

deviations for the 2D case without the added partial terms, and with the

constant g assumptions. Column 9 gives the same results with the

additional partials included in the algorithm. Once again the cost, J,

increased slightly ( _ 5%). This can be attributed to the fact that the

convergence of the algorithm with the added partial terms may be slower.

The standard deviations of these parameter estimates (for both Cols. 7 and 9 )

are not given since their calculation requires another full iteration of the

algorithm. Since the added partials quadruple the run time per iteration,

it was decided not to calculate these values. The important point is that,

considering the slight variation in J, even for this worst case, and the

possible benefits of the added partials in terms of the vastly increased

run time, it is not necessary to include these added partials in the

identification algorithm.

5.1.9 Aerodynamic Derivative Estimates

As was noted at the beginning of this section, the aerodynamic deri-

vatives themselves were not identified. Rather, the coeffients of first

or second order polynomial expansions in the longitudinal velocity, u, of

these derivatives were identified. Using these identified coefficients, it

was then possible to reconstruct the time histories of the total derivatives,

and compare these estimates with the actual values. These comparisons are

shown in Fig. 5.5 for the 2B data and the original model structure. The

fits to most of the derivatives was good. This indicated that, although some

of the estimates of the polynomial coefficients had relatively large uncer-

tainties,their influence on determining the total derivative behavior was

small.

64



C_

ul

II

k-

I I

o

r

-,24

-.IT

-0|i

p. |I

_C ql

1"

-.I!

IJ

X22 STrlOILITY FIND CONTROL DERIVrtTIVES

! • i • i - i • i • i I " i • i - . i - i •

_xx x

't'llt,l-t,tll,l,111,

1.0 I.I l.l I.I +.0 S.0 1.0 Y.I 1.0 1.0 I0,0 11.0
TIME - SECOndS

I I ! f ! I t l t l ;

U7 114 $I _ N 16 _ M i) )+

_2 _maILttY FIND CONTRCL DERtVRTtVE$

• i - i • i - i • i i • i • i • i • i •

x • J¢ i( x x iI ii M ii l( x

II

M " .

l.l • I,I + 1.0 $.0 ?.0 l.l l,l 10.O ]l.I
T|HE - SECONDS

I , I l I I " I I I I I

II_ III H Irl II M 10 M I_ St

I{i_I_IIIM. IIIIJ_IIT

-.Ill

",Ill

o,III

_.lYI
p.

._L,Itl

l.-

l-,IO0

I_L,lol
31:

-.ill

-.Ill

• _.III
l.+

x

tIP II I( +

Ill M

II

IIlc_ • W , ! , t , ! , t , ! ,. t _ ! _ _ I . I , _

! °0 t.B "I,l I .I °°0 ¢ .I T.0 |.I |.I II.l | l.l
TIP_ - _COmOS

" . I . I I I l I I I l I .i

Ul Illi II m II II . II 14 II II

++.|I

I

X2_ STABILITY _ c'ONTROL DERTYRTIYE$

• I - i • i • i • I " ' i • i • i - i " i -

MII III{_

iii III

31131 II KIII Ill I Ill Ill II IK l! +

I.O I,I I.I t,I I.I • l.I ?.I I.I lol II.t II.I
TIME - SECONDS

I I f 1 I I I 1 _f I J

u1 iii II . 12 Ii i_ ii II 4l IP

letl_tlllllX_ I'll_ ?r

• X'21 STRBILITy RND CONTROL DERIYRTIVES

• I • i • ! i • i • I • i • i • i • i •
; I_ M i{

R

FIGURE 5.5 X-22 ESTIMATED AND ACTUAL (SIMULATED) STABILITY AND CONTROL DERIVATIVE TIME HISTORIES



O_

tll

X22 STF_L_ITY _ CON'TROt DERTVRTTVEg

Jtp

X22 b"TRDZLZTY P_O CONTROl. DERIVRTIV1E$

• I " ! " I _ • I 1 • ' i - ! " i - e "

• ! . f • I • I m * • I • ! ' f • | " f *

I.O I*1 l.O l.O I.I 5.il I.I ToO I*(J I.l |O*l IJ*l
Tit'S. - So.COt',lOS

I , ! I ! I ! I ! ; ! '"
-- IL,It 114, H iS N It* ii Ikb i:l II

lamaCllmDmlJ._tLec¢lrlr

.ll

.H

• _ .It.It

.80

.el

_¢

°e4

• .Or

O.i)e • ! . ! * l * I * 1 • f * e • I
0.0 I°0 l.o IB.O q, .Ill $.ql $,g 1'o0 II°O

TtNE - SECONOS

I ,, I l I " I f I" I

I11 I1_ N _ N II 8o 64

• • i - | • i i . i - i - i • nu • ! - | " u "

• X illll IM HIll

|.qP N.O I,II ,,O

f I I
u

X22 STNBILITY _ CONTROL. DERTVflTIVE$

Cl Ill Iii ]11 ..

l .:It

|.0 S[ W[

oil

.8

*4

. ! . I , I1 , | • I • 1 • I , I , t ."He .
.t

I.I JJ _,1 • |.1 |.O 5.11J I.O T.O l.§ J.O 10.0 J|.al
rlr,_ - SECONDS

I I l I t l I 'l f t J

i11 ul fl 1o 141 16 to 1,4 II lip

MI_II_WlL VlUCI_

FIGURE 5.5 (CONT.) X-22 ESTIMATED AND ACTUAL (SIMULATED) STABILITY AND CONTROL DERIVATIVE TIME HISTORIES



,,,..,I

o

!-i
*Z0

I

090

X22 $TADIL|TY _D CONTR_ OERZVNT|VES

• | - ; • l • i - ! - 1 '. ! • i • i - | -

X_XXXXXXXX

MX

_$ tfl *-t.t-e.l-l.f-w-9-

0.0 I.O I,g I.e 4.0 1.0 t.O T,0 IJ 1.0 10.0 3l',O
TJ_ - SECO_S

I,I f I I I I 1 f I "!

u; st4 go _ _ e! ,_ _ 63 $1

-.au

II°t

t.|

|,e

. t.|

a.t

i '$.t

9.1}

N

.I

.$

.4.
|.0 f,0 t,t

I f f

Iz; 114 tl

!
-,| !

_-°$q

I -.St

"N

*.¢1

-,¢$

_ll;t * I . ! P • I t * | . t

8,0 1,0 t*l I.I t°O I.| 1.0 ?.1 |,O $°0 ||,0 I1°1
• •

_2 STRBItTI"Y _ CONTROl. DERIWtTTV_9

• i - i • | - u • i _ ! - n - u - | - i -

r

NN •

• , . a 1 f * I a

TIP_ - $[C0_S

I l l "'f I I I I f I I

lit' • 114 tl t_ _ 16 IO 14 I$ JJ|

ILIII_I1 lll41blllLdbCl'Irff

FIGURE 5.5 (CONT.) X-22 ESTIMATED AND ACTUAL (SIMULATED) STABILITY AND CONTROL DERIVATIVE TIME HISTORIES

X22 _OILI_ f_DC_ DERIVNT[YES

_xkKl - i - z - I " l • l • l - J • i - l -

lllllll

,I.O.l,l',llflt_f,?.,,_.

l.l rl.O" l.O l,O f,I I.I l.O ll.l llJ

Tl_ -_CGNOS

|' t f I I f I I

_ u lo _ 13 J_



5.2 HL-10 Flight Test Data

This data was used mainly for checking and validating the maximum

likelihood program. Flight data for the HL-10 lifting body was supplied

to SCI by NASA FRC (Flight Research Center) Edwards along with as much

information about the flight condition as was available at the time. FRC

also supplied SCI the results of their stability and control derivative

extraction program along with the specific measurement and a priori parameter

weights that were used. The HL-10 data did not contain gust effects and a

linear model for the lateral dynamics was used.

It should be noted for the case of unknown measurement and process

noise covariances an additional term, N_n(det(HP Ht+ R)) is
R_

added to the cost criterion, where Pss is the steady-state Kalman filter

error covariance matrix. This is because the weighted mean square error
N

will always have a constant value of _ x (no. of states) since the weighting

matrix is the sample covariance.

5.2.1 Dynamical Equations of Motion and Observation Equations

The linearized lateral equations of motion, including the effect of

the wind gusts, are:
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where p is roll rate (°Isec)

r is yaw rate ('Isec)

is sideslip angie (°)

is roll angle (°)

6 is aileron deflection (')
a

_r is rudder deflection (o)

_n is wind gust in equivalent sideslip angle (o)

C is a transformation matrix

C

Ixz

1 -IT o o

. Ixz

Iz

I 0 0

0 0 1 0

0 0 0 1

All the quantities are in the body axes system.
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For both the HL-10 and the M2/F3 flight data, (which is discussed

in Section 5.3), a , the angle of attack, y, the flight path angle,

and V, the velocity, were assumed constant over the data record and

their values were supplied The same was true of I I and I . In• XZ ' X Z

most cases, Y and Y were assumed to be zero, which implied that there
p r

were nominally 20 parameters to identify (7 in F, 9 in G and 4

initial conditions), excluding the wind gusts and biases in measurements.

The observation equations, again assuming the existence of gusts,

are given below:

Yl

Y2

Y3

Y4

LYs_

Y

m

l 0 0 0 0

0 l 0 0 0

0 0 1 0 0

0 0 0 l 0

m

P

r

L-C-

+

0 0

0 0

0 0

0 0

Y6a Y6r0 0 YB 0 0

_ - __

H D u

0 6a

0 _r

0
l

0

Yo

-- -]
0 nl

0 n2

+ l Bn + n3 (5.2)

,!0 n4J
_YB _ n5

F n

where Y5 is the lateral acceleration

ni, i = i,...,5 are independent white noise Gaussian measurement errors.
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Notice that Bn always appears with B when gusts are assumed to exist.

In the processing of the HL-10 data, 8n=0, thereby leaving the

measurement noise, _, as the only random noise source. The Kalman filter

equations reduce to the original state equations and the Maximum Likelihood

Method is essentially similar to the Output Error Method With the exception

of the weighting matrix.

5..2.2 Characteristics of HL-10, Fli_ht 19-2

The HL-10 data was assumed to contain no gusts and was, therefore,

processed by using the generalized output error criterion. The results,

however, were somewhat unexpected and, in all, eight different runs, each

with a variation on the original output error run, were made to solve the

problems which were encountered. It was later learned that these same

problems had been encountered by FRC. Each of the different runs are

described in this section, along with the objectives, observations and

conclusions particular to each.

Along with the observations and control time histories (see Fig. 5.6)

wind tunnel derived parameter estimates were supplied to SCI by FRC. There

were 327 data points at a sampling rate of 50 per second, for a total

of 6.54 seconds of data. The angle of attack of this flight was 16.8 °

and the mach number was 1.22.

It was evident from the data that a substantial amount of clipping

and quantization had occurred during data collection. An accurate model

for the observations would include the dynamics of the instrumentation

system, but no information was available. One effect of not including a

model of the instrumentation dynamics and quantization effects would be

to have correlated nongaussian residuals, in each of the observations.
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5.2.3 Results of Flight 19-2

The first processing of the HL-10 data was with the maximum likelihood

identification program in an output error mode. As such, it differed from

the FRC Newton-Raphson identification program in only one way, the weight-

ings of the fit errors. FRC uses a constant weighting matrix, based on

an idea of the instrumentation accuracies. The SCl approach estimates

the measurement noise covariance matrix and weights the fit errors by

the inverse of this matrix. It is shown in Section 4.4 that the ML estimate

of the measurement noise covariance matrix is given by the sample covar-

lance of the observations. Edwards also uses a priori weighting on the

difference between the parameter estimates and the wind tunnel estimates,

which was not Inltlally included in the SCI maximum likelihood program.

The time histories of the five response variables along with the

estimated values obtained after ii iterations of the data are given in

Figure 5.7. Included also in Figure 5.8 is the fit error in the p and r

observations. A comparison of the parameter values themselves and the wind

tunnel values is given in Table 5.3 along with the associates standard devia-

tions in the parameter estimates. The parameter values obtained from the

FRC Output error method with fixed weights after 7 iterations and a priori

weighting are also shown in Table 5.3, along with the associated confidence

bounds.

As Figure 5.7 shows, the fits in all the observations were very good.

However, as is often the case, the fit error alone does not indicate an

acceptable set of parameter values. The two major problems that appeared

were that (i) the signs of the Lp, Lr, Np and N r derivatives had all

changed from those of the wind tunnel values and (2) the fit error in

* In this investigation, it was assumed that the wind-tunnel and theoretical

values had correct signs. This may not necessarily be the case for lifting

bodies flown at transonic speeds due to limitations of wind-tunnel testing

and theoretical calculations. The question of how much confidence can really

be placed in these values has not been resolved.
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TABLE5.3 HL-IO PARAMETER ESTIMATES AND STANDARD DEVIATIONS

"4
tn

Wind

IT&nnel

Parameter and Theo-

L -0.3435
P

L 0.2723
r

L B -30;75

N 0.0245
P

N r -0.1290

N 8 6.8411

Y -0.0617
P

Y -0.0120
r

Y8 -0.0916

L6a ;11.2464

L6a 5.665

io

N6a 0.8135

N6r -3.617

N O

Y6o -0.00180

Y_r 0.0111

Y
o

Ptnitial

Rlnltlal

_Inltlal

Likelihood Function Value

FRC Values wlth

a priori weighting

(with confidence

bounds)

-0.3436 _0.196)

1.188 (0.0196)

-52.073 (1.18)

0.0326 (o.o157)

-0.1114 (0.0157:

7.0496 (0.118)

-0.0584 (0.0039_)

-0.0122 (0)

-0.0855 (0.00392)

11.996 (1.18)

5.877 (1.18)

1.456 (0.118)

-3.178 (0_118)

-0.0018 (0)

-0.00427 (0)

Max. ilk. Estimates

(with St'd. day.)

0.915 (0.025)

-1.363 (0.138)

-56.489 (0.305)

-0.160 (0.00429)

0.432 (0.0187)

8.523 (o.719)

-1.471 (0.0202)

12.415 (0.0731)

6.288 (0.173)

21.03 (0.302)

1.262 (o.o136)

-3.186 (0.033)

-1.633 (0.0479)

0.0623 (0.00390)

0.919 (0.00992)

o.513 (0.00898)

1.76 (0.158)

0.117 (0.322)

0.398 (0.0188)

1.939 (0.0697)

-2243

Max. Lik. Estimates

with Yp and Yr
(with St d dev.)

0.395 (0.022)

0.0671 (0.iii)

-46.94 (0.417)

-0.187 (0.00370)

0.548 (0.0152)

7.474 (0.0978)

0.329* (0.00307)

-1.091' (0.0122)

-0.i458 (0.0161)

12.494 (0.0775)

6.544 (0.148)

17.341 (0.222)

1.245 (0.0201)

-3.313 (0.0326)

-1.206 (0.0401)

•0515 (0.00373

0.0629 (0.00895)

0.412 (0.00778)

3.325 (0.146)

0.0251 (0.0263)

0.1305 (0.0152)

1.767 (0.0511)

-2359

Max. Lik. gstlmates

With a priori Weighting
(with Stld dev.)

-0.295 (0.0114)

1.574 (0.0728)

-47.179 (0.285)

0.0380 (0.00352

-0.111 (0.0114)

6.292 (0.0574)

0_335" (0.00192)

-1.064" (0.00754)

-0.0949 (0.00383)

12.124 (0.0586)

6.252 (0.111)

0.247 (0.117)

1.404 (0.0131)

-3.257 (0.0229)

1.561 (0.0205)

-0.0231 (0.00435)

0.0717 (0.00782)

-0.751 (0.0112)

2.225 (0.116)

-o.71o (o:o21)

-0.226 (0.0125)

-1.748 (0.0663)

-1552

The identified qumntitiea are Yp + sin •, Yr- 508 •

Max. Llk. _st_tee

With a priori weighting and Biam
(with St'd dev.)

-0.271 (0.0114)

1.349 (0.0747)

-50.32 (0.330)

0.0550 (o.o.o323)

-o. o896 (o.o168)

6.845 (0.0570)

0.310 (0.00192)

-1.019 (0.00762)

-0.0918 (0.00382)

12.282 (0.631)

6.429 (0.114)

-0.0137 (0.0951)

1.357 (0.123)

-3.194 (0.0212)

1.562 (0.0,63)

-0.0482 (0.00443)

0.519 (0.00768)

-0.639 (0.00829)

2.348 (0.117)

-0.599 (0.0201)

-0.219 (0.0111)

-1.429 (0.0571)

-2264
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the observations (although only p and r are shown) exhibited a sinusoidal

characteristic. Although the precise reasons for these problems are not

known, there are several contributory factors.

The first factor is that the parameters with the opposite signs

are weak parameters -- that is, they cannot be accurately identifed from

flight test data. This is the approach FRC has taken with the L and
r

Np parameters and in the a priori weighting, they weighed their wind

tunnel values very strongly. There is also an identifiability problem

because the stability augmentation system (SAS) was used on this flight_

Such a system would tend to suppress certain modes of the system, while

emphasizing others. The parameters of the suppressed mode are, therefore,

hard to identify.

A second factor could be that the linearlzed dynamics are not accurate

enough for the flight conditions of this data. Also, there may be coupling

between the longitudinal and lateral modes, which is not included in the

model.

A third factor, which may account for the slnusoidal characteristic

in the fit error, is that due to the instrumentation dynamics, the measure-

ment noise is actually correlated. This hypothesis could be verified by

reprocessing the data with the measurement noise modeled by a second order

linear system. Final verification of these possibilities would have to be

based on processing additional data under similar flight conditions.

79



In many instances, the solution to such problems is to adjoin to the

likelihood function other measures of performance, usually indicating some

a priori knowledge of the parameter values. Several examples of these

are the a priori weighting and constrained parameter values which are

discussed later. A less direct approach, of reducing the dlmensionality

of the parameter space, is also presented.

5.2.4 Output-Error with Yp and Yr Identified

The remaining series of runs were all aimed at solving the problems

encountered with the first processing of the HL-10 data. First, the YP

and Y derivatives were considered as two additional parameters to be
r

identified.

In the previous run, both Yp and Yr were considered zero. However,

by examining the equations of motion, p can be expressed as a function of

(Yp + sin _) and _ can be expressed as a function of (Yr - cos _)r. This

would introduce previously neglected second order effects into the estimate

of p and r, and possibly account for the sinusoidal characteristic in the

fit error.

The results indicated that the fit in each of the observations was

about the same as in the straight output error case although, as shown

in Table 5.2, Lr does have the same sign as the wind tunnel value and Lp is

less positive. However, on the other hand, both Np and N r are worse.

In addition, the sinusoidal characteristic of the fit error remained,

diminished only slightly.

5.2.5 Output Error With Constrained Parameter Values

Since it seemed clear that the opposite signs on the four parameters

were a result of trying to minimize the fit error, and until additional
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terms were added to the model, these signs were likely to remain opposite,

the next run constrained the values of Lp and Nr to remain negative. This

would answer the questions of whether there was a set of parameter values

which would minimize the cost criterion (although not globally) with the

indicated parameters having the same sign as the wind tunnel values. If

these values remained on the constraints, no such minimizing set exists.

The results of this run were that the L and N values remained on
p r

the constraints and the Lr and Np values again had the opposite signs. In

addition, the fit in the observations was drastically degraded. Only the

fit on r was of equal quality as in the two previous trials.

5.2.6 Output Error With Different Initial Conditions

One remaining possible cause of the changed values could be the

presence of local minima having the opposite signs on L
p, Lr, Np and Nr.

The next run used initial parameter estimates of L and N which were
p r

more negative than the wind tunnel values, while keeping the control

derivatives the same. The results of this run were that the signs of all

four parameters (Lp, Lr, Bp, Nr) were again reversed and, if more itera-

tions had been performed, the final parameter values would have, more

than likely, been equal to the initial set of output error values.

Although the results from many sets of initial parameter values would

be necessary to conclusively determine if the values from the initial

output were truly the global minimum, it appears that this might be the

case. If the signs on the four parameters are to be the same as the wind

tunnel values, an additional cost must be put on the difference between

the parameter estimates and the wind tunnel values. This is precisely the

reason for the "a priori weighting" mentioned earlier.

5.2.7 Output Error With A Priori Weighting

The values for the parameter weights used in this run were obtained
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dlrectly from the FRC's runs supplied to SCI. Figure 5.9 shows the time

histories of the observations and the resultlng estimates (except for _)

for this weighting. It is clear that the fits to the observatlonsD except

for p, have been degraded. However, as shown in Table 5.3, the values

of the four indicated parameters have the same sign as the wind tunnel

values.

It was found, however, that except for p and r there was appreciable

bias in the fits to the observed data. Not accounting for this bias

in the computation of themeasurement noise covariance will cause

incorrect weights to be assinged to the different observation residuals.

This will effect both the computation of the gradient and the information

matrix, resulting in incorrect parameter step sizes. Another run was

made with the sample bias of the observation residuals computed, at each

iteration, and accounted for in the sample covariance calculation. The

fits to the observed data for this second processing of the data with a

priori weighting are shown in Figure 5.10. The fits to r, B and $ are much

improved over the previous case. Only the fit to the lateral acceleration

data has not improved. As shown in Table 5.3, many of the parameter

estimates for the run are closer to the original wind tunnel values than

for the previous run, without considering the biases. It, therefore,

appears that when using a priori weighting, consideration must be given

to the possibility of having biased residuals, which must be used in

computing the sample covariance.

A final processing of the data with a priori weighting and including

the identification of the output biases was made with the additional

feature of retaining only the diagonal elements of the sample covariance

for the estimation of the instruction noise variances. All the off-diagonal

terms were set to zero. The rationale for this was that each of the

measuring instruments on board the aircraft operate independently and there-

fore the errors would be uncorrelated. The fit to the observed data did

not improve over the previous run and many of the parameters were now
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farther removed from the wind tunnel values.

No additional processings with Varied a priori weights were made,

since sufficient data by which these variations could be Justified were

not available.

5.2.8 Parameter Estimates Used for Prediction

It has been often stated that using a set of estimates for the stability

and control derivatives to predict the measurements from a flight test,

under similar conditions and with similar instruments as the one used to

identify the derivatives, would be the most valid test of the accuracy of

the parameter estimates. Since another set of flight data for the HL-10,

under similar conditions, was not available, an experiment was run in which

only the first 227 points of data were used to identify the parameter

estimates and these results were used to predict the final i00 points (2

seconds) of data. The identification algorithm which was used included

the a priori weighting and the identification of the output biases. As

the fits to the observed data, given in Figure 5.11, indicate, there is

some divergence at the end, especially for r. However, the divergence

in _ and _ was anticipated since the observed data suffers heavily from

clipping during the final 1 second. The fit to the lateral acceleration

was as good as might be expected considering the fit to the first 227

points,

5.3 M2/F3 Flight Test Data

The data supplied to Systems Control, Inc. on flight No. 21, case 6

of the M2/F3 lifting body is sho_m in Figure 5.12. The influence of

wind gusts is evident in the time histories of the sideslip angle and the

lateral acceleration. Referring to Section 5.2.1, the wind gusts were

assumed to enter the dynamical equations of motion in exactly the same

manner as the sideslip angle _ • Nothing was known, a priori, about the
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statistics (correlation time, mean square value) of the wind gusts.

The only information supplied SCI was that the output error program used

by FRC had failed to match the time histories adequately. A total of

401 data points were supplied, representing 8.02 seconds of data. Once

again, the effects of the instrumentation (quantization, clipping) were

ignored as were the dynamics of the boom which measures sideslip angle

(B vane). It was also interesting to note that the flight conditions

were appreciably different than for the HL-10. The angle of attack was

only 1.57 ° and the Mach number was .468.

Seven separate runs were made with the M2/F3 data, indicating a

succession of possible model representations for the equations of motion.

Since neither the measurement noise nor wind gust statistics were known

a priori, these were included, where called for, in the list of parameters

to be identified, along with the stability and control derivatives and

initial conditions.

5.3.1 Output Error - No Wind Gusts Included

The maximum likelihood algorithm, in the output error mode, with the

wind gusts assumed zero, was first used in trying to process the M2/F3

flight data. It was intended that from such a run, it would become

apparent where the wind gusts were having the most impact and also the

results would serve as a standard against which the identification algorithm

performance with the wind gusts included, could be measured.

The time histories of the fit in each of the five measurements are

given in Figures 5.13. As these figures indicate, the worst fits were

obtained on thesideslip angle and lateral acceleration measurements,

although none of the fits were as good as with the HL-10 data. These

results also indicated that the model for including the wind gusts, suggested

in Section 5.3.3 is appropriate, since the measurements involving the

sideslip angle show the most random fluctuation when compared to the data

from the HL-IO flight.
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The parameter values obtained for this processing of the data are

given in Table 5.4.

5.3.2 Perfect Measurement of Sideslip Angle

For this processing of the M2/F3 data, it was assumed that the measure-

ment noise on the sideslip angle measurement is much smaller than the gust

noise. With this assumption there is a perfect correlation between the process

noise and the sideslip angle measurement noise, both being _n" The state and

sideslip angle measurement equations now appear as

C_ = Fx + Cu + rBn

Y3 ffi_ + Sn + nB _ B +Bn

The Kalman filter for the complete four state, five output model must account

for the perfect Bn correlation. The most direct method for doing this is to

first construct an equivalent four state model which is uncorrelated with the

sideslip angle measurement. This is done by adding the quantity y3-B-Bn,

which has value zero, to the dynamics, i.e.,

C_ = Fx + Gu + FBn + 0 (y3-B-Bn)

{ _ 0Bn) B T} ffi 0. O = r is seen to beand solving for 0 such that E (FB n n

the solution and the equivalent model has the resulting from

C_ = Fx + Gu + r(Y3-¢)

This equation is in the form of the Kalman filter, and it can further be shown

that is the exact Kalman gain. Since is the third column of F, the

dependence of _ on B is eliminated and the equations of motion and the measure-

ment equations can be rewritten as
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TABLE 5.4 M2/F3 PARAMETER ESTIMATES AND STANDARD DEVIATIONS

Max. ilk. Estimate

-output error mode

(with St'd dew.)

Lp -0.4673 -1.548 (0.0935)

L r 0.8878 2.008 (Z.187)

L_ 75.140 -54.49 (2.45)

Np .0802 .i02 (0.006)

Nr -.6876 -.0307 (0.078)

N_ 7.5342 2.876 (0.136)

y *
P

¥ *
r

YB -.2001 -.0476 (0.125)

L6a 14.04 14.82 (0.301)

L6r 10.03 73.97 (8.59)

L o 0 11.14 (1.828)

N6a .83 .596 (.0223)

N6r -4.06 -12.874 (0.578)

N o 0 -.345 (0.121)

Y6a 0 -.00033 (0.0151)

¥6r 0 .0301 (0.363)

To 0 .0179 (0.354)

_b/ae

Plnltlal 3.807 (0.521)

rlnltlel! -2.262 (0.0785)

_inltlal -.558 (.0251)

¢i._Itial "34.44 (.175)

q

8_nltial

Likelihood

Function

Value

-1502

Mak. Lik Estimate

Assuming perf. B Meas.

(with 8t'd dew.)

0.679 (0.035)

10.49 (0.547)

-97.79 (1.615)

-.0203 (0.00393

-1.675 (0.0590)

7.324 (0.152)

-1.249 (.0597)

9.804 (0.109)

-109.28 (5.519)

-10.46 (0.328)

.719 (.0104)

6.844 (0.643)

.177 (0.0357)

-.0363 (0.00669)

-.874 (0.222)

.378 (0.0299)

-.281 (0.0531)

•359 (0.188)

-1.66 (0.0280)

-32.69 (.158)

-2237

Max. Ilk. Estimate

Directly ident, of B

(with St'd dew.) n

-i. 779

25.46

-135.38

-.142

1. 628

-9. 890

-1.466

16.022

-157.130 (17.88)

.145 (2.11)

2.128 (0.0456)

-Ii.754 (1.467)

.427 (0.198)

-.0125 (0.00689

-.926 (0.227)

.295 (0.0313

2.936 (0.0629)

1.657 (0.852)

-1.604 (0.0556)

- .565 (.0279)

!-33.630 (.0796)

-44.147 (.856)

s.231 (.107)

2.937 (.256)

-Max. Ilk. Estimates

With a priori veightln E

(with Sttd dev.)

(0.214) -0.461

(1.908) 4.154

(2.238) -67.95

(0.0147) .00475

(0.199) -.764

(0.349) 6.763

(0.0386) -.202

(0.3017) 10.96

-42.18

-.572

.762

-4.37

-.233

-.0847

-1.932

-.0974

-6.01

4.846

-2.22

-31.91

-2038 -1122

(0.0182)

(0.140)

(1.o2)

(0.00349)

(0.0134)

(.0876)

(o.oo392)
(0.161)

(3.13)

(o.115)

(o.ln)

(0.106)

(0.0433)

(0.00867)

(0.286)

(0.37_

(0.0933)

(0.296)

(0.0453)

(.223)

Wax. ilk. est_atas

with dependent parsms.

fixed, fixed.

(with St'd dev.)

e

4.435 (.113)

-1.36 (.0594)

9.66 (.169)

e

-9.004 (_141)

.756 (.0134)

e

-.00239 (.0320)

-.0273 (.00634)

.456 (.0189)

-.667 (.108)

-3.125 (.239)

-1.061 (.0597)

-31.52 (.224)

m

-1051



TABLE 5.4 (CONT'D)

,.o

Parameter

L
P

L
r

L8

N
P

N
r

N B

Y
P

Max. Lik. with

Rank Deficient Solution

Y
r

Y8

L6a

L_r

L
O

N6 a

N6r

N
o

Y6a

Ygr

Y
O

¢bias

P
initial

rinitial

¢initial

-.531 (.0189)

4.268 (.144)

_103.35 (.105)

.0397 (.00682)

-.989 (.0672)

7.568 (.306)

-1.19 (.0590)

10.25 (.0845)

-5.539 (.0257)

-10.89 (.280)

.561 (.0254)

-.512 (.651)

.587 (.0833)

-.0360 (.00660)

-.737 (.219)

.408 (.0296)

-.164 (.0428)

-1.029 (.139)

-2.054 (.0552)

-31.576 (.0705)

Likelihood -1689
Function Value
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where Y3 is treated as a deterministic control. The order of the dynamical

system has been reduced to 3 and the number of measurements to 4.

Once a complete set of parameters has been obtained for this reduced

order system, the time history of 8n can be recovered. This is important

since the identification of the statistics of the wind gusts is also

possible using identification. Sideslip angle estimate 8 can be found by

substituting the parameter values of the three state model into the original

four state model and solving for its time history. Then subtracting

from the sideslip angle measurement gives the time history of 8n + n 8 (n8 was

originally assumed small). A flrst-order linear model of the form
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_n ffi aBn ÷ vB

(Y3 - _) = Bn ÷ n8

where v 8 is the process noise with covariance q, can be fit to this

data and the time constant a, the process noise covarlance q, and the

covariance of the measurement noise n 8 identified.

The time histories of the fit to the four observations (not in-

cluding sideslip angle) are given in Figs. 5.14. The parameter estimates

along with the estimates of the process noise covariance and the (recip-

rocal of the) time constant for the wind gust are given in Table 5.3.

The time history of the wind gust 8n (including the neglible measurement

noise) is shown in Fig. 5.15.

The fit in each of the four measurements is very good, although time

histories of the fit error indicate that there is still the same slnu-

soidal variation, especially in p, that was observed in the HL-IO fit

errors. Only the fit error in the lateral acceleration, ay, approached

being white noise, which is the indication of the best possible fit. The

value of the covarlance of the noise on the sideslip angle measurement was

almost two orders of magnitude smaller than the process no_se covarlance

which supports the original assumption of this run. One surprising result,
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however, is that the L N_ and L_ parameters changed sign from thep,
wind tunnel value, r r

There appeared to be two principle reasons for the N5 and L_

r r

parameters having the wrong signs. The first was that the magnitude

of the aileron variation was much larger than the rudder variation,

unlike in the HL-10 case. Since the effect of the controls is additive

in determining p and r, there is an identifiability problem with respect

to N5 and L_ . This is substantiated by the small values of the terms
r r

of the sensitivity matrix corresponding to the N_ and L5 parameters.
r r

The second factor contributing to the incorrect signs is the opera-

tion of the yaw damper. This causes a feedback loop which activates the

rudder as a result of yaw rate. The time histories of r and _ appear
r

in phase, therefore, in the M2/FS time histories. In such a situation,

unless the control dr is modeled as a linear combination of the states,

there is a uniquesness problem as to whether the actual aircraft dynamics

on the feedback loop is being identified. With the yaw rate and _ in
r

phase, the N_ parameter, at least, will appear with a positive sign.
r

The problem of incorrect signs was of major concern and was the

motivating factor for many of the remaining processing of the M2/F3

data. The experience with the HL-10 data indicated that constr_ning

those parameters with wrong signs to have the same signs as the wind

tunnel values would not correct the problem. The solution had to lie

either in a more complete aircraft model or in dealing directly with

the numerical problems causing the incorrect signs.
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5.3.3 Wind Gusts Included: Direct Identification of Process Nois_C_v_rlance

and Time Constant of Correlated Gusts

For the third processing of the M2/F3, the gusts were included dir-

rectly in the dynamical and measurement equations requiring that a full

Kalman filter be used in the maximum likelihood identification algorithm

in order to obtain the sensitivities. For this processing of the data,

the model of the wind gusts obtained from the previous run was used

_n = a_+V6
(5.3)

where a is the reciprocal of the time constant and v 8

disturbance with covariance q. Replacing 8n

equations by equation (5.3) results in

-L u L 0 O- p
P r

_[ N N N_ 0 0 r
p r

C _l = Y + Yr + YB _ 0 B
s_n_ cosa v

_i 1 tane 0 0 0 ¢

_n L 0 0 0 0 a Bn

is an unknown

in the original system

L_a L_r Lo

N NoN6a 6r

+ "Y_a Y_r Yo

0 0 ,x,o

0 0
t_

Note that an additional bias term
o

6a ! 0

&r 0

l ÷ 0

0

l

has been added to the _ equation.

With t he inclusion of the covariance of v_ and the _n state, there are

now 24 parameters to identify: 17 stability and control derivatives (Yp and

Y are assumed zero), 5 initial conditions, q and a.
r

The difficulty involved in setting up the identification algorithm

in such a case is that both the measurement and process noise covariances,

R and q respectively, are unknown. However, both R and q are needed in

establishing the Kalman filter gain, which is assumed to be in steady state.

To begin the identification, therefore, some initial estimates of both q

and R are necessary. R is assumed to be the diagonal elements of the sample

covarlance matrix obtained from the output error method. An initial value

for q is obtained from the results of the previous run.

v8
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Once the initial iteration is completed, the value of q is updated

like any other parameter and the measurement noise covariance, R, is ob-

tained from the sample covariance. This last fact is derived from the
A

property that with xili_ I defined as the Kalman estimate of the state at

time tI given data up to time tl_l,

lim

N

l )T._ (Yi-H_i li-I " Dui ) (yi-Hxi Ii-]-Dui : HPss HT + R

i=l

where Pss is the steady state error covariance matrix, obtained from

solving a discrete Ricatti equation. The above expression is only

approximate for finite data lengths.

The time histories of the observations and the estimates are

given in Fig. 5.16, and the final parameter values are given in

Table 5.4. Although the fits to the p, 8, _ and a measurements
Y

obtained from this run improved over those obtained from the output

error method, they are not totally acceptable. It is interesting to

note that the signs of the parameters L and L have retained the
p r

same sign as the wind tunnel values.

The time histories in Fig. 5.16 also indicate that most of the

fits to the observed data are biased. Inclusion of measurement biases

in the list of parameters to be identified did not, however,

improve the performance.
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The reason the maximum likelihood algorithm with the Kalman filter

cannot reduce the fit error any further is basically numerical. What

has occurred is that the diagonal element of the measurement noise

covariance matrix, R, associated with the measurement of the sideslip

angle has become very small when compared to the covariance of the wind

gust disturbance. Indeed, the wind gust itself is practically white.

As a result, the measurement noise cannot be distinguished from the wind

gust. The alternative was to restructure the model so that the measurements

of _ + 8n' the total sideslip angle are perfect. This is precisely what

was done in the previous processing of the data.

5.3.4 Three State Model With A Priori Weightin_

The results of the two previous processings of the M2/F3 data

indicated that the assumption of perfect measurements of the sideslip

angle was reasonable and produced the best fits to the data. However,

as stated earlier, the three state model resulted in wrong signs for

many of the parameters. The first processing of the data in an attempt

to correct these incorrect signs used the priori weighting technique.

The same weights as for the HL-IO data were used for the M2/F3. Measure-

ment biases were included in the list _ of parameters to be identified

since the use of a priori weighting on the HL-10 data indicated the need

for bias estimation.
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As shown in Fig. 5.17 the fits to the observed data resulting

from a priori weighting were quite poor, especially in roll angle

and lateral acceleration, althoughthe parameter estimates themselves,

as given in Table 5.4, were quite close to the wind tunnel values. It

is interesting to note, however, that L 6 still has a wrong sign.

r

5.3.5 Three State Model With Fixed Parameters

The basic causes of the incorrect signs for some of the parameters

are that either the sensitivity of the output to changes in that parameter

are small, as indicated by a relatively small diagonal element in the

information matrix, or that there is a correlation, with respect to the

sensitivity, between two or more of the parameters being identified.

Such a situatlon would be indicated by an off-diagonal element of the

normalized information matrix being close to _i. If this were the case

the correlated parameters could not be individually identified.

Both these problems existed with the M2/F3 data.

One technique which has been used for treating both these problems

is to fix one or more of a set of parameters that are correlated.

The results of the identification run with fixed parameters indicated

(i) the convergence of the algorithm to the final set of parameters

estimates is more rapid and monotonic than when all the parameters

are being identified, and (li), the final fit to the observed data

is degraded to a certain degree. This latter characteristic is due

to the fact that the number of degrees of freedom (equal to the number

of parameters to be identified) for fitting the observed data has been

reduced. In comparing the value of the likelihood function or cost for

two cases with different numbers of parameters being identified (measure-

ment noise covariance R being identified in both cases) the comparison

should be made between a corrected cost, given by

f(N,k)AnlR l
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where N is the number of data points, and k is the number of parameters

being identified and f(N,k) is a monotonically increasing function of k

which depends upon the objective of identification. For certain types of

systems, Akaike (Ref. 38) has shown that the one-step ahead final prediction

error using the identlfied model is given by

J = N-k _n IR_
N+k

A plot of J vs k for a typical model is shown in Fig. 5.18. The important

thing to note is that the predictive qualities of a model do not improve

monotonically with the number of parameters, even though the fit error

decreases monotonically with the number of parameters

It was indicated earlier that there was very little variation in

the rudder during the M2/F3 flight, which would make identification of

the _ derivatives very difficult. In fact, the identified values ofr

the L 6 and N_ derivatives with the three state model were physically

unreasonable, _eing opposite in sign from the wind tunnel values. The

first processing of the M2/F3 data in this set of runs was therefore

made with the rudder derivatives fixed at the wind tunnel values, with

measurement noise biases being included in theunknown parameter set.

The results indicated a strong correlation between L and N and
P r

almost all the other parameters, and a fairly poor fit to the data.

Fixing the same parameters but including a priori weighting did not

improve the performance.

The second processing of the data in this series included fixed

L and N derivatives as well as fixed L 6 and N 6 The resultsP r .

showed only a slight improvement over the _reviou_ processing, and a

strong correlation still existed between L r and Lp; N and and
P N_;
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Np and YS" It appeared, at this point, that a problem of identifiability

was
developing between the measurement biases and the initial conditions.

The next processing of the data therefore included fixed L Nr, d r deri-
p'

vatives and initial conditions. The fits to the observed data were still

very bad and correlation still existed between Lr and LS, Lr and Lo, and Np
and N .

0

After several more experiments it was decided that L L r, LB, Npp'

N and the _ derivatives should all be fixed and the initial conditionsr r

be identified instead of the measurement biases. The results, shown

in Fig. 5.19, were the best fits to the observed data obtained with

the technique of fixing parameters at the wind tunnel values. The

values of the parameters which were identified were all of the same

sign as the wind tunnel values, as shown in Table 5.4.

5.3.6 Three State Model With Rank Deficient Solution

The results of the data processing, using the technique of fixing

selected parameters of a correlated set at fixed values, showed that the

convergence rate was improved due to better conditioning of the informa-

tion matrix. The basic reasons why the parameter fixing technique does not

always work are: (i) the correlation is usually not simply between

pairs of parameters, but may involve the entire set of unknown parameters,

and (ii) it is not usually possible to correctly choose a set of para-

meters that should be fixed and the values at which they should be fixed.

It was decided at this point to investigate, more fully, the problem of

possible correlation between more than just pairs of unknown parameters.

The solution of this type of dependency problem is to find the directions

in parameter space corresponding to combinations of parameters which

cannot be identified. A perfect dependency among the parameters would,

strictly speaking, result in a zero eigenvalue of the information matrix,

causing it to be singular. However, since round-off and other numerical
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errors prevent the information matrix from being exactly singular, all the

eigenvalues will be non-zero with a spread between the smallest and

largest eigenvalue being many orders of magnitude. In such a case it is

better to use a rank deficient solution for the inverse rather than a

full rank solution. That is, the inverse to the information matrix should

be computed leaving out one or more of the smallest eigenvalues.

The reason for neglecting the smallest eigenvalues can be explained

in terms of the parameter step. The eigenvalues of the information matrix

are the dimensions of the uncertainty ellipsoid, associated with the

parameter estimates, in parameter space. The smaller eigenvalues indi-

cating a larger dimension and therefore more uncertainty. Since the

LxL information matrix M can be expressed in terms of its eigenvalues

and eigenvectors, %i and Vi, i = I, . . , L

L

M = %i Vt viT
L=I

the parameter step is given by (see Section 4.3)

L

m

Ap = M -I (D J) = _L-1%1 i Vi viT

where DJ is the gradient of the likelihood function. Therefore, the smaller

elgenvalues also contribute the largest proportions to the parameter step.

This implies that the largest components of the parameter step are in the direct-

ion of the most parameter uncertainty. Therefore, the information matrix

inverse is computed neglecting a certain number of the smaller eigenvalues,

i.e. L-K

M -I = i_l= %1 -I V i viT

Each eigenvalue which is left out relates to a singular dlrection in

parameter space, and, therefore indicates a combination of parameters which

cannot be identified uniquely. Rather than fix the value of one or more of

the parameters, as was necessary with the a priori weighting technique, the

rank deficient solutio_ fixes combinations of parameters corresponding to

nearly zero eigenvalues. Thus the dimension of the space in which the set of
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parameter values that minimizes the cost are sought, is reduced. It is important

to realize, however, that at each iteration the values for all the specified un-

known parameters are assigned updated estimates.

The number of eignevalues to be neglected depends on which order

rank deficient solution produces a parameter step resulting in a set of

parameters with the lowest associated cost. The procedures is as follows.

Starting from some inimimum number of eigenvalues (i0 in the HL-10 case),

a reduced rank inverse is computed, the parameter step isdetermined and the

associated cost evaluated. One more eignvalue is then added and the procedure

repeated. This same thing is done until all the eigenvalues are added in,

with the last inverse being a full rank inverse. The same procedure, starting

from a minimum number of eigenvalues and progressing to the full rank, is

repeated every iteration.

The fits to the observed data are shown in Fig. 5.20. Comparing

these with Fig. 5.14, it can be seen that the fits are only slightly

degraded. The fits to roll angle and lateral acceleration are much

better than those obtained for either a priori weighting or fixing

of correlated parameters. The parameter values obtained for this third

order rank deficient solution (3 eigenvalues neglected) are given in Table

5.4. Although several of the parameter still have opposite signs from

the wind tunnel values, many of them are much closer to the wind tunnel

values and are more reasonable than the full-rank, 3 state parameter es-

timates. Some, such as N 6r, now have the correct sign from physical

considerations, where before they did not. It is clear that further

development work on this rank-deficient solution approach will improve

the estimates even more.

It should be mentioned that the basic identifiability problem in the

M2/F3 data is due to the stability augmentation system (SAS) providing

all the sudden movement. The methods described above (viz. a priori

weighting, fixing parameters and rank-deficient solutions) are indirect

means of handling this problem. It would bemore exact to model the relevent

characteristics of SAS in order to alleviate the problems.
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VI

BACKGROUND FOR LINEAR SYSTEM INPUT DESIGN

The importance of choosing appropriate inputs (i.e., control surface

deflections) for exciting specific modes of an aircraft or executing spe-

cific maneuvers has been recognized for a long time. Several conslderations

which enter into the selection of inputs for an aircraft are:

i. Pilot Acceptability - The inputs should be capable of being im-

plemented easily by a pilot and the resulting response of the

aircraft should not endanger pilot safety.

2. Parameter Sensitivity - The measured response of the aircraft

should be sensitive to the parameters that are being identified.

This is necessary for obtaining good estimates of the parameters

from the flight test data during the inverse computation or the

identification process.

3. Instrumentation Limitations - The dynamic range of the instruments

and their slgnal-to-noise characteristics impose limitations on

the types and magnitudes of aircraft maneuvers. The relationship

between input design and instrumentation specification has been

emphasized in (Ref. 40).

4. Derivative Extraction Method - In the past, the choice of control

inputs has often been dictated by the desire to use a particular

method for derivative extraction. For example, sinusoidal inputs

were used initially to obtain the transfer function of an aircraft

at specified frequencies (Ref. 40). However, it was soon realized

that this was very expensive in terms of the total flight test time

required to obtain the aircraft stability and control derlvatives.(Ref. 40)

Next, the step and the doublet type of inputs were used and specialized
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methodssuch as Prony's Method (Ref. 41) and the Time Vector Method(Ref. l)

were devised to extract derivatives. With the more powerful digital

techniques available today such as the Newton-Raphson (Ref. 8) and the

Maximum Likelihood Methods, (Ref. 33) arbitrary inputs can be handled

and it is no longer necessary to limit the inputs for the success of

the derivative extraction method.

,

Modeling Assumptions - The slx-degree-of-freedom equations of

motion and the nonlinear aerodynam/c model for an aircraft contain

a large number of parameters (over 20C). The simultaneous esti-

matlon of all these parameters from a single maneuver is not

attempted since this would lead to nonuniqueness and identifl-

billty problems. Generally, llnearized decoupled equations of

motion are used for the extraction of longitudinal and lateral

stability and control derivatives. The inputs selected for

exciting these modes should be such that the assumptions of

llnearlty and decoupllng are not violated. The inputs currently

in use are mostly of the doublet type. The resulting aircraft

response is an impulse-type of response about a given trim

condition. Generally no attempt is made to optimize the frequency,

the shape, or the timing of the impulses in order to make the air-

craft response sensitive to the parameters that are being identified.

The motivation for the present study comes from a simulation

of the X-22 VTOL Aircraft perfomed in 1970, and described in

Section 5.1.4. The multlstep input gave parameter estimates which

a;e an order of magnitude more accurate than the estimates obtained

using the Cornell input. At about the same time, one of
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the authors developed a general theory of optimal input design

based on the techniques of modern control theory. (Ref. 42) In

the followlng section, the salient features of the theory and

the computation aspects of input design are presented. The

results of applying it to the C-8 aircraft parameter identification

problem are considered in section VIII.

6.1 Related Work on Input Design in System:Identlfication

The importance of input selection for system identification has also been

recognized for a long time, though a unified mathematical treatment has emerged

only recently. Some of the earlier attempts at input design were based on fre-

quency domain methods and engineering judgment. A large amount of literature

exists on Pseudo Random Binary Sequence (PRBS) inputs which have been found to

provide improved identification for a large number of systems. (Ref. 43-45) However,

PRBS inputs use very little information about the known properties of the system.

Since in a number of physical systems some a priori information is available

about the modes of the system (e.g., short period mode, phugoid mode, etc. of

an aircraft's longitudinal motion), one can use this information to design inputs

for identifying these modes more precisely.

The work described in this report is most closely related to that of Aoki

and Staley, (Ref. 46) Levadi, (Ref. 47) Nahi and Wallis, (Ref. 48) and Levin

(Ref. 49) on input signal design for system identification and to that of McAulay

(Ref. 50) and Esposito (Ref. 51) for signal synthesis. Aoki and Staley (Ref. 46)

consider single-input, slngle-output discrete-time systems. Levadi's results;

(Ref. 47) are only applicable to the case in which the unknown parameters enter

linearly in the system impulse response. Levine's results (Ref. 49) are applicable

when linear regression is used to estimate the unknown parameters.

The results presented here are applicable to multi-input, multi-output,

continuous time systems. Tile computational algorithms proposed are new and

and have not been used earlier for input design purposes.

118



VII

THEORY OF INPUT DESIGN FOR LINEAR SYSTEM IDENTIFICATION*

The problem of inputdesign for linear system identification is formu-

lated here as an optimal control problem• The performance criterion used

is the sensitivity of the system response to the unknown parameters. The

other criteria for input design such as pilot acceptability, instrumentation

characteristics and state deviations described in Section VI are considered

indirectly through an energy or power type of constraint on the input and

through modifications of the final results. It is assumed that an output

error or maximum likelihood method which can handle arbitrary inputs is used

for derivative extraction. In these methods, the measured response of the

system z(t) is expanded in terms of the system parameters as follows:

z(t) = y(8,t) + n(t)

where y(t,e) is the true system response, 8 is an Nxl vector of unknown

parameters and n(t) represents measurement noise• Let 80 be the best

a priori guess of 8. By a Taylor series expansion of Equation (7•i),

(7.l)

z(t) = y(O o, t) + V 0 Y(0o, t) (@ - Oo ) + n(t) + higher order (7.2)

terms

where

In the output error method, the step (0-00) is determined by a least

squares solution of Eq. (7.2) over the time interval [0,T]. It is intui-

tively clear that the sensitivity function V e y(80,t) must be sufficiently

large to achieve high accuracy in determining the parameter step (8-80) .

Furthermore, the sensitivity functions must not be linearly dependent over

0 _ t < T for a unique solution of (0-00)

The theoretical aspects of this work were supported in part under AFOSR

contract No. F44620-71-C-0077. See "Dual Control and Identification Methods

for Avionic Systems - Part II, Optimal Input Design for Linear System Identi-
fication".
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For input design, we now define a scalar performance index in terms

of the sensitivity functions. For a single parameter, a suitable performance

index is the weighted mean square value of the sensitivity function over

the time interval [0,T].

P

Jl _ .__12/ T 2

i,,i
0

dt (7.3)

where o_ is the variance of noise in the measurement Yi" The perform-

ance index J1 favors the measurements which are more accurate and makes

them more sensitive to 81 compared with the mesurements that are less

accurate. It can also be shown that Jl represents the inform-

ation in the measured response about the parameter 01 •

For the multiparameter case, the choice of a scalar performance index

is much more complicated due to the conflicting nature of the individual

sensitivity functions. One possible choice is a weighted sum of the

individual sensitivity measures.

N

J -- _ wj J] (7.4)

j=l

where the weighting coefficients wj reflect the relative importance of

parameters. It is clear that the criterion (7.4) can also

be written as the weighted trace of the Fisher Information Matrix M.

J = tr (_) (7.5)
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where W=

and M=
T T

_0 _0 dt

(7.6)

(7.7)

P_.

Ia2 2

° o°I
(7.8)

Other criteria such as the weighted trace of M-I the smallest

elgenvalue of M or the determinant of M lead to nonlinear optimi-

zation problems which are much more difficult to solve.

An alternative method for choosing a criterion function is to con-

sider the objective of identification. For example, if the identified

parameters are to be used for control system design, the inputs should

be selected so as to minimize the control error. Similarly, if the

parameters are used for response prediction, the input design should be

based on minimizing the mean square response error. However, these cri-

teria generally lead to optimization problems which are mathematically

intractable or extremely difficult to solve. It is also felt that the

advantage gained by solving these difficult problems may be more than

offset by the basic uncertainty about the initial parameter values 80"

The input design process described here should be viewed as a sequential

design process in which tile inputs are selected based on the current best

knowledge of the parameters.
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7. I Problem Formulation

Consider the linearized aircraft equations of motion

_- FX+ Gu
(7.9)

where x is nxl state vector and u is a mxl control vector. F

and G are n x n and n x m matrices of unknown parameters (stability and

control derivatives). The measurements are denoted by a p x i vector

z(t) which is contaminated with white noise :n(t)

z(t) = Hx(t) + n(t).
(7.10)

H is a p x n matrlx and n(t) is a zero mean Gaussian white noise process

Z{n} = 0, E{n(t)nT(T)} = R_(t - z).
(7.11)

Let O denote the N x i vector of unknown parameters in the above

equations. It is required to select the input {u(t), 0 _ t _ T} to

maximize the weighted trace of the information matrix M subject to an

energy type constraint. The information matrix M for the unknown parameter

set e can be written as

(Ve x)T HT R-I H(Vex ) dt
(7.12)

The energy constraint on u(t) is

oT T
uudt = E (7.13)
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The performance index J can be written as,

J = hr{WM} = tr{WI/2MW I/2}

#= tr{ (Vsx " WI/2) T RTR -I H(V8x • W I/2) dt}
o

(7.14)

In order to use this criterion, the quantity (Vox) must be calculated

as a function of time. A differential equation for (Vsx) can Be easily

found from the system equation. Since the multiplication by W I/2 represents

a column operation, this is equivalent to calculating successive equations

for

1/2 ax

wl ao-_ ' i = I,...,N

This can be accomplished by the following:

@

, 1/2 ax , 1/2 aF , 1/2 ax , 1/2 aG

_w i tw i _w i_i -_i ) = x + +
with _ = Fx + Gu.

(7.15)

An equivalent way of formulating the problem which makes use of the

simultaneous computation of w_/2 ax/a8, involves the specification of aug-
l

mented FA, GA, and H A matrices and xA vector. These are defined as follows

(with m the number of inputs and p the number of outputs):

q

-F I0 I lO-

aF I F I I 0
wl_ I 1 I

: I : I I:
aF

_ o I IF
WN_N I I I

(N+I) nx (N+I) n

N

aG

Wl

aG

(N+l)nxm

(7.16)
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H 0

-- T T
HA = -r- "7

o o
Np x (N+l)n

eo a

• t o
= 0 R__

"..,%.

0

Np x Np

(7.17)

and

xA =

m

X

_X

_x

w2-_2

_x

(N+l)n x I

(7.18)

With these definitions and using Eq. (92), it is possible to write:

XA = FAXA + GAU
(7.19)

The performance criterion is now redefined as
T

Io T T -ij ffi XAHARA HAX A dt

(7.20)

In the next section, we obtain a set of necessary conditions for the

optimal input using the Pontryagin's Maximum Principle (Ref. 52).
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7.2 Optimal Engergy-Constralnedlnput UslngMax_mum Prlncip!o

Let A(t) denote the costate vector for XA(t) and _ be the constant

multiplier associated with the constraint (7.13). The Hamiltonlan of the

augmented system is,

1 (xA)THAT IHACXA) _ E CAU ] (7.21)_= 2 [- RA + _(uTu _)] + AT[FAXA +

the necessary conditions of optimality are

or

(7.22)

and C/e = 0
u

or

u* = -1 (G A )T X
(7.23)

The boundary conditions are homogeneous.

XA(0) = 0 , ),¢r) = 0

Substituting for u* in Eq. 7.19, we obtain the two point boundary value

problem,
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Since the boundary conditions are homogeneous, the solution is trival

vlz. xA E O, k E O, u E 0 except for certain values of _ which are the

elgenvalues of the two point boundary value problem. In other words, the

problem is of the Sturm-Liouville type.(Ref- 52) The eigenvalues and the optimal

input can be determined in a number of ways. Two possible methods are (i)

the transition matrix method and (ii) the Riccati equation method.

Let _(t,0;_)

7.2.1 Transition Matrix Method

denote the transition matrix of 7.24 for a particular _.

_(t,O;_) = exp

Partition _(t,0;_)

(7.25)

into XA and X parts as follows:

(7. 265

Then

%(T) L_xx(T,O; _)

(7.275

The second equation in (7.275along with the boundary conditions gives

X(T) = _%k(T,0:W) X(O) = 0

(7.28)

For a nontrivial solution

I+xx(T,0; )I= o
(7.29)
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Eq.(7.29)is the elgenvalue equation for the Hamiltonian system (7.24). It is

a nonlinear algebraic equation in _ and can be solved by a Newton-Raphson

iteration. In general, there is an infinite set of eigenvalues, but we will

be only interested in the largest value of p which Will be shown to maximize

S (Section 7.3).

7.2.2 Rlccati E_uation Method

The eigenvalues _ are functions of the interval length T. Therefore,

one can fix p and determine T for which ¢%%(T,0;p) becomes singular.

Another way is to use the Riccati matrix P(t) defined by the relatiQnship

xA(t) = P(t)%(t) (7.30)

An equation for P(t) is obtained by differentiating both sides of Eq. (7.30)

and substituting from Eq. (7.24).

xA =;>+P;

or

1 T

[FAP-_ OA GA

or

I GA

P(0) = 0.

(7.31)

(7.32)

The Riccati Eq. (7.31) differs from the usual Riccati-equation of the

Llnear-Quadratic problem in that the forcing term (last term) in Eq. (7.31)

enters negatively. Eq. (7.30) can also be written as
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X(t) = p-1 (t) xA(t)

whenever p-1 exists. At final time t = T, since X(T) = o,

p-1 (T) ffi O. (7.33)

which means that a conjugate point exists at t = T.

Eq. (7.33) provides us with a method to obtain the critical interval length

T corresponding to an eigenvalue _. The Riccati Eq. (7.31) is integrated

forward in time for a particular _ using initial conditions(7.32). When

the elements of P(t) become very large, the critical length T correspond-

ing to an eigenvalue is being reached. Now p-l(t) is integrated using the

equation

d p-I p-i
(p-l)= _

or

d
(p-l)

I p-i GA p-i= - p-IFA- FIp -I + HTRAIHA + _ GAT

(7.34)

At the critical interval length T, all the elements of p-i go to zero.

It follows from the Sturmian property(Ref. 52) that the smallest T corresponds

to the largest eigenvalue _.

After the critical length T corresponding to the largest value of

has been determined, Eq. (7"24) is solved forward in time using _(0) obtained

from Eq.(7"28)and(7.29) as an eigenvector of #xI(T,0;_) corresponding to
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the zero eigenvalue. Thereby, the boundary condition %(T) = 0 is auto-

matieally satisfied. A unique value of %(0) is found by using the normal-

ization condition of Eq. (7.13).

7.3 Application of Functional Anal_s%S
I

In the last section, the optimal input u was characterized in terms of

the solution to a two point boundary valueproblem. In this section, we

show that the optimal u is an eigenfunction of a positive self-adjoint

operator corresponding to the largest eigenvalue p.

Let A denote the operator corresponding to Eq. (7.19) viz.

t

A[u] =i eFA(t-T) GA U(T)dT

0
(7.35)

Let A*[-] denote the adjoint operator to A[.]

A*[w] = GAT ; TeFAT(s-t) w(s)ds

"t

Let <u,w> denote the inner product

<u,w> = uT(t)w(t)dt

(7.36)

(7.37)

The performance index J can be written as

I = <.xA HTRAIHA XA>

T-I
- <Au, HAAS>

(7.38)
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The energy constraint of Eq. (7.13) is written as

<UtU> " E

It is well known that J is maximized subject to the above constraint by

u which is an elgenfunction corresponding to the largest eigenvalue of the

operator A*HIRAIH¢" Furthermore, since A*HTR-1HA A is a positive self-

adJoint operator, all its eigenvalues are real and positive (Ref. 52). For finite

T, the operator is also compact and has a finite maximum eigenvalue. The

* H_RA RAA corresponding to this eigen-optimal u is the eigenfunction of A* T -i

value and normalized according to <u,u> = E.

A A
(7.39)

Also,

Max Jffi vE
U

(7.40)

To show the relationship of the above elgenvalue problem with the two

point boundary value of Eq. (7.24), define

(7.41)

Z = Au

and

m

ft T eFJ (s-t) w(s) ds

Then, using the definition of A and

= F Z+GAU , z(0) = 0
A

T -1 •

. _ FTn+ .AR,.,z.n(T)= o

A ,

(7.42)

(7.43)

(7.44)
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From Eq. (7.39) and (7.42)

(7.45)

or

1 _T n
P

Therefore

- 1 GA%T

_ - - FTn + HTR-AIHA z ,

z (0) = 0

n(T) = 0

(7.46)

,(7.47)

A comparison of Eq. (7.46) and (7.47) with Eq. (7.24) shows that

Z = XA

7.4 Examples

We now apply the above results to two first o.rder and a second order

example.

7.4.1 First Order System with Unknown Gain

Consider the system

= -x + Ou (7.48)

where x and u are scalars and 8 is the unknown gain.

y = x+v s

where E{v} = 0, E{v(t)v(r)} = r _(t - 3).

(7.49)
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From Eq. (7.23) and (7.24)

(7.50)1
u = ---1

tl

d__ e_ "-1 - _ (7.5l)

dt

Ei__genvalues

Equation 7.51 gives

=! v0x+ x
r

_ IX]+ 1_: i [_vex _-_ [¥re. + x]
r

= C1-!-) x •
_r

2 a > O, a = 0 and _ < O.
Let a = I - i/_r. Three cases arise: 2 2 2

2
can be easily shown that only a < 0 leads to a nontrivial solution.

Let

Then

1

w = - 1

k(t) = C I sin wt + C 2 cos wt

Vox(t) = r[Clw cos wt - C2w sin wt - C1 sin wt - C 2 cos wt]

vex(O)= o=> clw- c2 = o

k(T) = 0 => Cl[sin wT + w cos wT] = 0

(7.52)

It

(7.53)
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For nontrivial solution,

tan wT = -w (7.54)

Eq.(7.54) is the eigenvalue equation. The smallest root w of Eq.(7.54)
o

corresponds to the largest value of _. The optimal input u is obtained from

Eq. (7.50) as

, C 1

u = [sin w t + w cos w t]
_o o o o (7.55)

= 2
where _o i/r(l + Wo). Notice that u satisfies the same second order dif-

ferential equation as _ viz. Eq.(7.52). C 1 is determined from the condition
I T u2dt = E.
o

This gives

ECl = /2 - 1/4 sin 2T
(7.56)

7.4.2 Levadi's Example

Levadi considers the following example in his paper (Ref. 47).

_-- -x+ bu

y = X+ V

(7.57)

(7.5S)

where v is a correlated noise process with autocorrelation function.

E{v(t)v(T)} = c e -'alt-Tl
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It is required to estimate b only.

Levadi's (Ref. 47) results can be easily derived as follows:

v(t) can be represente d as

(7.59)

where e is a white noise process and

E{E} = 0 , E{c(t)c(_)} = 2ac 6(t - T)

A new measurement can be generated by differentiating Eq.(7.58). (This

procedure is similar to that of Bryson and Johansen, Ref. 53).

= (a - l)x + bu - ay + s

it.

Now 9 can be regarded as a new measurement which has white noise _ in

The new information matrix is:

T

r --!-i [(a - l)VbX + u]2dt (7.60)
M = Jo 2ac

where

_b x = -VbX + u (7.61)

Now the problem is in the same form as example 7 .4.1 except that the

performance index is slightly different.
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The following equations of optimality are easily derived.

u =- 1 [_ _ a- 1
- z "VbX]

2 (p

= .(a - 1) 2
ac VbX + a - 1 u + A (7.63)ac

(7.62)

An equation only in terms of u can also be obtained from Eq. (7.61) - (7.63)

2

u- [1 a -1
2pac- 1-] u = 0 . (7.64)

The eigenvalue equation is

tan(wT + _) =w
a (7.65)

2

a - 1 ]1/2
where w = [-1 + 2 ac -

= tan -I w

(7.66)

The optimal input u = A sin(wt + @) . (7.67)

Notice that the results for example 7 .4.1 can be obtained by letting

a ÷ _ and 2c/a _ r, where 2c/a represents the area under the autoeorrelation

function of v.

The optimum value of w is chosen to maximize p. From Eq. [7.66),

2
1 a - i

P = 2a---_ [1 + 2 ] " (7.68)
l+w

2
It is seen from Eq.(7.68) that when a > i, the maximum of p is attained

for the smallest value of w. This corresponds to the case when the noise is

wide-band. For the narrow band noise case viz. a 2 < i, the second term in Eq.

(7.68)is negative and the maximum of _ viz. i/2ac is reached at w = =. The
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practical implication of this result is that the input should be of as high
frequency as possible. Since the noise is narrow band, this increases the

high frequency signal to no_se ratio at the output.

7.4.3 Second Order Example

The following system represents the short-period longitudinal dynamics

of an aircraft.

°jLx j
6
e

(7.69)

Y=Xl+V

xI represents pitch rate, x2 is a linear combination of pitch rate and angle-

of-attack and 6 is the elevator deflection. The transfer function of the
e

system from elevator to pitch rate is

Xl(S) blS + b 2

6 (s) 2
e s - als - a2

(7.70)

Optimal Input for Identifying bl:

Sensitivity equations are

Optimal input, 6e = - Ii/2_

2 Xl_ llal_ _2a2_I ° ¥ Vb1

_'2 = -tl "

6
e

(7.7].)

(7.72)

(7.73)
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Both the optimal input
e

equations of the form

and X2 satisfy fourth order linear differential

z=

[D4 + (p_r- 2a2- al)D2 + a2]l 2 0

where D denotes the differential operator d/dt.

(7.74)

A solution for 12 is easily written as

X2(t) = C1 sin Wlt+ C2 cos Wlt+ C3 sin w2t + C4 cos w2t

where

Wl = 7_ - 4a2

Jo"2 + -  'a2-

2 2 2
a = (_ - 2a2 _ al ) = Wl + w2

Also wI w 2 = a2 .

(7.75)

(7.76)

2
It is assumed here that o > 2a 2 or i/_r > (4a 2 + al ) since other cases

lead to hyperbolic functions which become unbounded for large T. They are

rejected as possible solutions using the same reasoning as used in examples
7.4.1 and 7.4.2.

The expressions for Xl(t), VblXl, u(t) and Vb2X 2 are easily obtained

from Eq.(7.75)using Eq.(7.71)-(7.73). The elgenvalue equation, assuming Wl _ w2 'is obtained as
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sin wlT cos wiT sin w2T cos w2T

-w I cos wIT w I sin wiT -w 2 cos w2T w 2 sin w2T

a 2 + w 2 -alw 2 a2 + w 2

wlal w I 3 w2 2

3 2 w2a I_ -- wla I w 2 - w2a 2 - _-_w I - wla2 _r

where w 2 = - a21w I.

which maximize _.

- 0 (7.77)

Equation(7.76)is used along with (7.77) to select w I and w 2

From Eq. (7.76)

I__= a2 2 2 - w2 )2 + a_ •
pr (Wl + _i ) + al = (wl

The minimum of I/gr is attained at w_ = -a 2 or Wl = w 2, i.e., at the undamped

natural frequency of the system. However since w I = w 2 is ruled out by the ,

solution considered here, the root of Eq.(7.77) closest to the undamped natural

frequency should be chosen. Since WlW 2 = -a 2, the two frequencies will bracket

the natural frequency of the system.

The optimal input 6 e is

* 1
6e = 2-_ [ClWl cos wit - C2w I sin Wlt + C3w 2 cos w2t - C4w 2 sin w2t]

,C7.78)

CI , C2, C3, and C4 are determined as the eigenvector of Eq.(7;77)corresponding

to the root w I. They are normalized using the condition

T 62 dt = Ee
o

7.5 Extension to S_stems with Process Noise

Consider the linearized aircraft equations of motion

= Fx + Gu + rn

!

Z =Hx+v

(7.79)
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where n(t) is a gaussian white noise forcing function representing random gusts
and modeling errors,

z{n(t)} = o , z(n(t)n_(_D = q_(t - _) .

The information matrix M in this case is given in terms of the Kalman filter

for the above system.

R = FR + Gu + K(y - HR)

K = EHTR -I

(7.80)

(7.81)

E = FT + IF T + FQF - EHTR-IHE

(7.82)

where R denotes the best filtered estimate of x and E denotes the covariance

of 3. The Kalman filter provides a linear causally-invertible whitening

transformation for the process y since the innovation sequence (y - H_) is a

gaussian white noise sequence. The likelihood function is easily written

in terms of the innovation sequence (Refs. 24, 27). The information matrix M
is given as

fT HTR-IH(vo_)}dtM = E{(Vo_)T
0 (7.83)

where Vs_ denotes the sensitivity function of the filtered estimate _ with

respect to the unknown parameter vector 8. Note that both K and E are func-

tions of 8 so that the sensitivity equations are much more complicated than

for the no process noise case. Moreover M, in general, depends on the random

quantities q and v so that its expected value needs to be maximized.

A special case arises when 8 contains parameters from G only and the

initial state is known exactly. Since K and P do not depend upon G, the

sensitivity equation has a simple form

V8_ = (F - KH)VS_ + V8C u
(7.84)

139



K is, in general, time-varying, but if the system is completely controllable

and observable, K reaches a constant steady-state value (Ref. 54). Then Eq.(7.84)

is essentially similar to Eq. (7.19) and most of the theory developed in Sections

7.2 and 7.3 carries over to this case.

7.5.1 Example: Let us consider example 7.4.1 with additive process noise.

= -x + eu + n
(7.85)

y = X+V

where

E{B} = 0 , E{_(t)_(_)} = q_(t - T) , x(O) = 0 •

The filter sensitivity equation for 8 under steady-state filter gain, k > 0 is

VOi = -(i + k)Vsi + u , Vsi(O) = 0

Proceeding as in example 7.4.1, and defining

1 _ ]112
= [3 (I + k) 2 or

(7.86)

I (7.87)

P = r[,,_2 + (i + k) 2]

it is seen that the optimal input u obeys Eq. (7.54)-(7.56). Notice that by

increasing process noise q, the gain increases and _ decreases. Thus the

information M = _E for the same input energy E decreases. The frequencies

m, however, remains unchanged.
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7.6 State-Variable Constraints

Linear state variable constraints can be handled either directly by

adding a quadratic penalty function to the performance index or indirectly

by adjusting the total input energy E. The examples 7.4.1-7.4.3 show that

the amplitude of the input u is determined by E. Thus by adjusting E, the

amplitude of the input u and the state x can be bounded. Of course, the

inputs obtained in this fashion are not strictly optimal.

7.7 Steps in Optimal Input Program

As outlined in Sections 7.2 and 7.3, there are several possible com-

putational techniques which can be used to solve for a consistent pair of

interval length T and largest elgenvalue _max" The method that has been

implemented in this program is to numerically find the first time instant at

which the solution of the ricatti equation, relating XA(t ) and %(t), becomes

infinite. The instant at which this singularity occurs can be found with

arbitrary accuracy by continually using a finer and finer step size and noting

the instant at which the diagonal elements of the Riccati solution change sign.*

This change in sign of the diagonal elements is one key indication that the

ricatti solution has blown up through one direction (e.g., -_) and returned

from the other (e.g. +_).

The complete flowchart of the computer program designed to calculate

optimal inputs is given in Fig. 7.1. Many of the detailed steps have been

combined into a single descriptive step since their description is beyond

the scope of this report. For example, the actual technique used to inte-

grate the ricatti equation is explained elsewhere (Ref. 55).

The only instant in the computational algorithm where the theoretical

development was not followed exactly was in the calculation of the eigen-

The alternative technique of calculating the largest eigenvalue of the

Hamiltonian system is much more difficult since the determinant of the

transition matrix for the llamiltonian system exhibits a very sharp zero.
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requirement

Fig. 7.1
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vector of _xx(T,0;_) associated with the zero elgenvalue. The problem en-

countered was basically numerical. Very seldom, if at all, would the matrix

_x(T,0;_) exhibit an exactly zero elgenvalue. This was caused, to a large

extent, by the fact that T is never the exact instant of singularity of the

ricatti solution. This difficulty was resolved by choosing _(0) such that

the product _xx(T,0;_) %(0) had the smallest norm. If _%%(T,0;_) did, in-

deed have a zero eigenvalue, this would be the associated eigenvalue and

_XX _(0) E 0. The solution of this minimum norm problem is to choose %(0)

to be the (normalized) eigenvector associated with the smallest eigenvalue

of _k T_kx. This was the technique incorporated into the optimal input

program.

Two additional items should be mentioned concerning the steps in the

computational algorithm. The first involves specifying some additional fact

about the eigenvector _(0) so that it can be uniquely specified. It was

shown in Section 7.2 that the contro% at any time point, t, is a linear fune-

tlonal of l(t). Therefore, if a particular input energy is required, the

norm of _(0) is scaled to the proper amount.

The second item concerns the reconstruction of the M matrix as the last

step in the computer algorithm. To just calculate the performance index,

tr{WM}, it would be sufficient to use

T T T -Itr{ XAHAR A HAXAdt} •
o

However, the information matrix M, the Cramer-Rao lower bound M -1, and the

det(M) give important information about the identification of the parameters

which is not reflected in tr{WM}. For this reason, the augmented state

vector, xA, is rearranged to construct the matrix (Vox)WI/2, which is used

to compute the information matrix M. In addition, the eigenvalues of M and

a flgure-of-merit tr[M}• tr{M -I} is also computed.
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7".8 Specialized Algorithms

This section describes the two specialized algorithms which have been

incorporated into the main program. These are: (i) the algorithm for com-

puting the optimal set of weights when using the product of diagonal elements

Of M criterion, and (il) the algorithm for computing _max when the data

length, T, is specified.

An Algorithm for Choosing Weights:

As outlined in Appendix B, one purpose of the weighted trace is

to obtain a closer approximation to the determinant of M as the performance

criterion. This is done by bringing the ratio of the largest to the smallest

diagonal element of M as close to 1 as possible. The computer algorithm

takes the form of an iteratlve sequence of choosing weights, calculating the

resulting M and then updating the weights and repeating.

The formula for the updating of the weights, once an optimal input has

been computed along with the accompanying information matrix, is as follows:

W

new i Woldi + e[_-!-I - ]mii Woldi (7.88)

where m''ll iS the i th diagonal element of M. Additional logic was subsequently

added to the program to reduce the factor e by successive factors of 2 if the

new set of weights failed to reduce the ratio of the largest to smallest

diagonal element of M. This was made necessary since the equation (7.88) for

updating the weights is by no means optimal.

An Algorithm for Determining _ for a Given T:
max

The second special algorithm built into the program enables a user to

determine the Umax for a specific length of data, T. The most direct, but

costly, way of determining a value of Umax would be to pick several values

of _max and run through the program, finding the associated values of T.

These pairs (Umax,T) could then be used to construct a _max
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from this curve, the _max for a desired T could be determined. However, this

procedure would require a great many (_max,T) pairs. A more direct method

is to employ the optimal input program with associated zero crossing logic

which would converge onto the correct _max' For the simple case of (_I,TI)

and (_2,T2) as known associated pairs and T1 > Td > T2 where Td is the desired

data length, the iterative equation for successive choices of

_d is (_d2 E _2 ) (Ref. 56).

1 = (Ti - Td) 1 (T 2 - T d) _ . (7.89)

Ti - TI _i Ti T1
_di+l - _di

With a new, updated choice of _di, the program is run and an associated T i

is found. This new pair is used in Eq. (7.89) to find an updated Bd ' and

so on. Once the change in values for _d becomes smaller than some 7, the

procedure is stopped. For c of 1%, this procedure usually requires only

four or five repetitions. Of course, if the value of Td is outside the

range of the given initial pair (_1,T1) and (_2,T2), the logic of Eq. (7.89)

is altered appropriately.

Examples of both these specialized algorithms are given in Section VIII.
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VIII

APPLICATIONOFOPTIMALINPUTDESIGNTOC-8 AIRCRAFT

This section discusses the results of applying the optimal input

design technique described in Section _II to a two and four state model

of the longitudinal dynamics of a C-8 aircraft. In both cases the input

was designed to optimize the identification of the five parameters associated

with the short period mode. Additional constraints were put on the input

in the form of limiting the maximum excursion of the angle of attack and

pitch rate hy adjusting the total energy of the optimal input. In the first

part of this section the results of the two-state example are described,

including a frequency domain analysis of the optimal input, a comparison

of the input performance versus a suboptimal doublet elevator input and

use of the weighted trace criterion. The second part of this section describes

the results of a Monte Carlo simulation of the identification process for

the five short period parameters from simulated flight test data for both

optimal input and a suboptimal doublet input.

8.1 Short Period (Two-State) Longitudinal Dynarics of C-8 Aircraft

8.1.1 Optimal Input for two-state model

This investigation involved finding the optimal elevator deflections

6e to identify the parameters in the two dimensional short period longitudinal

equations of motion for a C-8 aircraft. The state variables are the pitch

rate q and angle-of-attack._. The equations for the short period dynamics of

the C-8 aircraft were

= + 6

- 0.737_] [_0.005_] e

and the measurement equations were
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and the values given
In determining the power spectral densities of nq n e,

in Ref. 13 (i deg./sec, error in q, and 2° in _) were multiplied by two

times the correlation time of the noise sources, which is assumed to be 0.01

secs. The measurement noise spectral density matrix is therefore given as

R

Ii 02 _.041

For this investigation the data length T was fixed at 4 secs. The
°

appropriate _max was found from a _max-T curve shown in Fig.8.1.

The value of _max associated with a T of 4 secs is 0.015. The shape

of the _max-T curve in Fig. 8.1 is characteristic of the general

relationship between these two variables.

For the _max and R values indicated above the optimal input

with the respect to the three parameters in the F matrix and the

two parameters in G is given in Fig. 8.2. The energy of the input

was 311 and tr{M} = 20,460. The check value of _max E was approxi _

mately 20,200, indicating a numerical error of 0.1%. The determinant

of M was computed to be i x 1015 , with the ratio of the largest to

smallest .eigenvalue of M being almost three orders of magnitude. The

eigenvalues themselves indicated that much of the relative uncertainty

in the parameter estimates was concentrated in two of the five dimensions.

The standard deviations of the parameter esti-,ates were

E0 l r°°l.167 0.063 Standard for G =
Standard for F =

Deviation 0.035 J Deviation L0. 025J

The time histories of the states _ and q, resulting from the optimal
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input are shownin Fig. 8.3. The energy of the input was constrained
@

so that _ does not exceed I0 . This method of energy limitation is

the most direct way of applying state constraints; although, as mentioned

in Section VII, the penalty function approach can also be used.

8.1.2 Fourier Transform of the Optimal Input

Since it was specified that the input be designed with respect to the

parameters both in F and G, it would be reasonable to infer that the input.

would have a low frequency component for identifying the parameters in G and

a higher frequency component for identifying the parameters in F. The actual

Fourier transform of the input signal is given in Fig. 8.4. The vertical

scale has been reduced to I/i0 its actual height in order to illustrate

the smaller variations. The DC component is 0.98. The small peak in the

transform occurs at a frequency of 0.375 cyc/sec, which is close to the

short period frequency of the aircraft.

The most important point demonstrated by the frequency domain anaiysls

is that the sinusoidal llke component of the input signal occurred at a very

specific frequency. It is well known that the maximum signal power can be

obtained from a second order system if it is excited at its natural frequency.

Therefore, in order to maximize the sensitivity of the output signal to the

parameters in the F matrix (which is given by the M matrix), or in other

words, to maximize the component of the output signal due to the parameters

in F, the input signal had a specific component set at the natural system

frequency.

8.1.3 Comparison with a Doublet Inut_al Duration and Energy

The third part of the investigation was to compare the performance

of the optimal input to that of a doublet input of equal duration and

energy. The doublet input used for this comparison is shown in Fig. 8.5.
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FIG. 8.5 SUBOPTIMAL DOUBLET INPUT

The determinant of M was 7 x 108 , seven orders of magnitude less than

for the optimal, while the trace of M was only 1600. The standard deviations

of the parameter estimates were

[.17271stadard[ °°311Standard for F = for G =
Deviation .164 ; Deviation 0346

Two of these values are smaller than those obtained for the optimal input,

however the standard deviations in the parameter estimates are not explicitly

in the optimization criterion.

_1.4 Effect of Small Parameter Value Chan_es on Optimal Input

Since, in an operational application, the actual parameter values are

not known, it was important to investigate the effect that changes in the

parameter values had on the optimal input shape. These changes might reflect,

for example, the difference between wind tunnel or theoretical estimates of

an aircraft's stability and control derivative and the actual stability and

control derivative values. It would be these estimates, however, that would

be used to compute the optimal input for the identification of those same

derivatives. The modified F matrix which was used in this investigation was
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F

-1.429 -.613
1 -.663

The optimal input resulting from this approximately 10% change in the

parameter values is shown in Fig. 8.6. The most Obvious difference is that

the input length is now 3.21 seconds instead of 4.0 secs. Otherwise, the

input has the same qualitative shape as the optimal input. The expected stan-

dard deviations in the parameter estimates resulting from this input when

it is applied to the original system are as follows:

l ['14 I".255 .0886 Standard for G =
Standard for F = ; Deviation .026

Deviation .036 [ J

Three of these values are very close to the standard deviations obtained for

the optimal input, while the other two represent increases of approximately

50%. The improvement over the suboptimal input, however, still exists.

8.1.5 Weighted Trace Criterion:

This part of the investigation involved using the weighted

trace criterion to derive the optimal input and choosing the weights

to make the diagonal elements of the information matrix equal. As

detailed in Section VII the performance criterion is tr{WM 1 where W

is a diagonal matrix of weights chosen to set _imll = ... = _ m .
P PP

When all the diagonal elements of WM are equal, maximizing the trace

of WM is equivalent to maximizing the product of the diagonal elements

which is a better approximation to det(M).

Since the input which maximizes the performance criterion depends

on the values of the weights, which in turn affect the input, an

iterative scheme was used to update the weights until convergence was

achieved.
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The optimal input and the state time histories for a T of 0.77

sec and an energy of 62.61, and unity weights are given in Figs. 8.7

and 8.8. The trace of M for this input was 611 and the determinant

of M was 8.11 x 103 . The ratio of the largest to smallest eigenvalue

of M was 1270. The eigenvalues themselves indicated that the parameter

uncertainty was quite disproportionate along two of the eigenvector

directions. The standard deviations in the parameter estimates are

given below.

Standard 12.03 5.57_ V0.381 _
Deviation for F = Standard for G =D

i. 43_ Deviation L0.129_

Notice the increase in standard deviations due to a shorter data length

(0.77 sec. vs 4 sec.) and smaller input energy (62.6 vs 311).

Using the weighted trace criterio_ and 12 iterations to bring the

ratio of the largest to the smallest element of WM down to 1.14, the

optimal input and state time histories given in Fig. 8.9 were obtained.

The determinant of M was calculated to be 2.27 x 104 which is five

times greater than the unity weights determined. The volume of the

uncertainty ellipsoid decreased by the same factor. Another indication

of this was the fact that the ratio of the largest to smallest

eigenvalue of M was reduced by a factor of 2 to 640, with the largest

eigenvalue itself being reduced by a factor of 2. The standard

deviations for the parameter estimates are as follows:

Standard 11.56 4.04_ F0. 304 _
Deviation for F = StandardI

1.23_ Deviation for G = L 0"122_

Notice on Fig. 8.8 that the parameters which are poorly estimated with unity

weights were assigned higher weights. As a result, the lengths of

the error ellipsoid along each of the axes has become more uniform and

the total volume of the uncertainty ellipsoid has been decreased.
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It is clear from this example that using a weighted trace criterion

does result in an input which can, in an overall sense, identify the

unknown parameters with improved accuracy. This improvement is measured

by the increase in the value of the determinant of M.

8.2 C-8 Monte Carlo Simulation

A more realistic test for verifying the advantages of the optimal

input over a sub-optimal doublet input of equal energy was to perform a

monte carlo simulation of the identification process using simulated flight

test data. To make the simulation representative of an actual flight test

the following were included. First, both phugoid and the short

period modes in the lonzitudinal eouations of motion were used

to generate the data, although only the short period derivatives

were to be identified. The optimal input had the characteristic

of suppressln_, as much as Dosslble, the Dhu=oid mode in order to maximize

the sensitivity of the output to the values of the short period parameters.

Second, short period parameters of the four state model that were used to

compute the optimal input were changed by approximately 50% from the equi-

valent parameter in the model that generated the data. In this way the

situation of designing the input based on the wind tunnel values of the

stability and control derivative was simulated.

There were several criteria for comparing the performance of the

optimal input with that of the suboptimal doublet input. Since the

optimal input was computed on the basis of maximizing the trace of the

expected information matrix, this is an obvious candidate. Maximizing

the determinant of the information matrix, or equivalently minimizing the

volume of the uncertainty ellipsoid, in parameter space, is another. How-

ever, by the nature of a monte carlo simulation, the parameter estimates

themselves can be used to calculate the sample covarlance, and its trace,

determinant or the eigenvalues can be used as performance criteria.

Finally, histograms of the parameter estimates themselves and the

associated probability distributions can also be used in determining

input performance.
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8.2.1 Optimal and Subopt_m-I Inputs for Monte Carlo Simulation

The four state longitudinal equations of motion for the C-8

aircraft which were used for computing the optimal input are

-.02 -32.2 0

0 0 1

.003 0 -1.588

-.004 0 1

N

33.74

0

-.562

-.737-

U

8

q

Gt

+

m

0

0

-1.658

.005

6e

Zlk Uk

z2k 8 k

z3k qk

where R = E{nln_ j }

n
u

qe
+

n
q

n

.125

.125

.125

.25C

61j

is the discrete measurement noise covariance. The optimal input

itself was designed with respect to enhancing the ability to identify

the five short _parameters, given in the locations marked

by an x
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|x x

x

These parameters are Mq, Ma, Za, M5 and Z_ . Considering the
e

amount of computer time needed to generate the optimal input for

five parameters and four state variables, a 2 second data length

was decided upon. The optimal input, for an energy of 58.0 is

shown in Fig. 8.10, along with the suboptimal doublet input, of

equal energy, which was used for comparison.

8.2.2 Generation of Simulated Flight Data

The different stability and control derivatives which were used

in the generation of the simulated flight data are illustrated

below.

F _

!
Same

!

-f

Same areaI-2238-28 G=1829!!

i 368 L007 !

The random noise added to each of the four measurements were derived from

a Gaussian random number generator. These noise sequences

presented a slight problem since, with a 2 second data length and

a .02 sampling period, the i00 samples were sometimes insufficient

for the noise statistics to have the desired mean

and covariance. However, since the performance of the optimal

and suboptimal inputs were always compared for the same measurement

noise sequence, the problem of incorrect noise statistics should be

of m_nor importance for comparison purposes.
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_2.3 Desc_ion of Monte Carlo Identification Simulation

A flow diagram of the Monte Carlo identification simulation is given

In Fig. 8.11 . Fifty different sets of random numbers are added to the

computed time histories in order to simulate a statistically significant

set of runs at the same flight condition. Each of the 50 sets of simulated

flight test data was processed in exactly the same manner using the SCI

maximum likelihood identification program. The parameters to be identified

consisted of the five unknown stability and control derivatives and the

measurement noise covariance matrix. The initial stability and control

derivative estimates were set equal to the values used in computing the

optimal input, while the initial state estimates were set equal to the

value of the first data point, since all four variables were being measured.

The estimate of the measurement noise covariance matrix is obtained, at

each iteration, from the sample error covarlance (fit error covarlance).

The four diagonal elements of the sample error covarianee are taken to

be the estimates of the four independent measurement nolsesequences.

For each set of data the identification procedure is carried out until

either the change in cost, between two iterations, or the norm of parameter

step size, or the norm of the gradient becomes smaller than some present

tolerances. For both the optimal and suboptimal inputs, convergence,

indicated by one of these three conditions being satisfied, was usually

obtained after 4 iterations through the data. At the end of processing a

set of data, the final parameter estimates and the information matrix

would be stored on tape for use in the latter compilation of the results.

Since there wasn't any process noise being considered in the simu-

lation, the maximum likelihood identification technique reduces to an

output error method, with the weighting matrix being the inverse of the

sample error covariance. The required calculations consist of, for a

given set of parameter estimates, integrating the system equations and

the sensitivity equations. Since there are 4 states and 5 parameters,

this makes a total of 24 simultaneous differential equations. The

information matrix is computed from the time history of the sensitivity
functions.
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It is interesting to note that since the weighting matrix is the

sample error covarlance, the value of the likelihood function will be

determined completely by the log of the determinant of the sample error

covarlance. There are also two different methods for choosing the

weighting matrix. One is that it should be considered a diagonal

matrix since the measurement noise sources are all independent. The

other is that, non zero off diagonal terms be allowed in the weighting

matrix. For this Monte Carlo simulation, the former method gave better

results. In the latter case, the error covarlance matrix had a tendency

to become singular at times.

For this application, none of the options discussed in Section

4.6 , including parameter fixing, rank-deflclent solution for M -I or

bounding the parameter estimates were used. Neither was it necessary

during any of the iterations to cut the step size in order to improve

the convergence properties.

8.2.4 Results of Monte Carlo Simulation

The monte carlo simulation consisted of 50 runs of the

identification procedure, with the parameter estimates, information

matrix and its elgenvalues, and the parameter covariance matrix

and its elgenvalues being saved at the end of each run. The ensemble

results are tabulated in Table 8.1.

The theoretical values of the trace of the information matrix,

using the actual values for the stability and control derivatives,

were computed to be 2.12 x I0 7 and 4.74 x 105 for the optimal and

suboptimal inputs respectively. The average values, from Table 8.1,

for the 50 runs were 2.15 x 107 and 4.79 x 105 , indicating that

50 runs were sufficient for obtaining accurate parameter estimate

and information matrix statistics. In addition, the trace of the

sample covarlance, computed from

Sample Covarlance =____I
50

50

(Apj-A_) (Apj-A_) T
J=i
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TABLE 8.1 MONTE CARLO RESULTS BASED ON IDENTIFICATION

FOR 50 SETS OF SIMULATED DATA

Optimal Input Suboptimal Input

Trace of Sample Covariance

Determinant of Sample Covariance

Eigenvalues of Sample Covariance

Parameter Standard Deviations

Average Trace of Information

Hatrix

Eigenvalues of Average
Information Matrix

Average Determinant of

Information Matrix

Average Trace of the

Covariance Matrix

(Cramer-Rao Lower Bound)

Lower bound on parameter

standard deviations (from

Cramer-Rao Lower Bound)

.242

1.62 x 10-19

I .234

.725 x 10 -2

.252 x 10 -3

.188 x 1Q -4

.202 x 10-7

.40?

.295

.00925

.0771

.000570

2.15 x 107

2.14 x 107

2.95 x 104

6.56 x 103

1.39 x 102

1.12

4.70 x 1018

.182

I .351

.234

.00876

.0665

.000247

.315

1.501 x 10-15

.262

.514 x 10-1

.115 x 10 -2

.766 x 10-4

.126 x 10 -5

.307

.491

.0235

.0537

.00168

4.79 x 105

4.79 x 105

8.46 x 103

4.77 x 102

2.18 x 101

4.14

1.95 x 1014

.312

.303

.441

.0311

.0568

.00262

168



Apjwhere is the error in the parameter estimates for the jth run and Ap is its

mean. As stated, it was found that the sample covariance matrix was fairly

close to the Cramer-Rao lower bound.

By almost all measures of performance the optimal input performed

better than the suboptimal input. The determinant of the sample covariance,

giving a measure of the overall parameter uncertainty based on the actual

derived parameter estimates, was four orders of magnitude smaller for the

optimal input. The eigenvalues of the sample covariance were smaller,

on a one-to-one basis, for the optimal input, indicating a smaller dimension

for each axis of the uncertainty ellipsoid.

The histograms of parameter estimates are shown in Figs. 8.12 - 8.1.6

For the M , Z and Z 6 parameters, the optimal input definitely pro-

duced a better ensemble of parameter estimates. The mean estimate

value was much closer to the actual parameter value and the standard

deviations and mean square errors were smaller. The performance for

the two inputs was about the same for the Mq, while the suboptimal input

did outperform the optimal input on the fourth parameter. (Ms ) I{owever,
e

it should be kept in mind that the accuracy of the parameter estimates

themselves was not a direct performance objective. Rather, the overall

input performance, as measured by the determinant or trace of the covariance

matrix was the criterion of interest.
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It is also interesting to note that the standard deviations for the

parameter estimates obtained from the inverse of the information matrix

(Cramer-Rao Lower Bound) did in fact bound the parameters standard deviations

obtained from compiling the individual parameter estimates. For the optimal

input, a comparison of these standard deviations is given below:

Lower Bound From

Information Matrix Inverse

(Cramer-Rao Lower Bound)

Actual Standard Deviation

of Parameter Estimates

.407
.351 .295

.234 .00925

.00876 .0771

.0665 .000570

.000247

The histograms of the error In estimating two of the four components

of the observation noise covarlance are shown in Flg. 8.1,7 and 8.18,. The

errors In estimating the covariance are plotted rather than the covariance

estimates themselves because the actual (sample) covarlance of the noise

varied from run to run due to the finite data length. As these histograms indi-

cate, the error in estimating the 2nd component was consistently less than 5%

for both the optimal and sub-optlmal inputs and most often within 1% for the

optimal input. For the third component, the error with the optimal input is

consistently less than 7% and with the sub-optlmal input, 9%. Overall, it is

accurate to state that the performance of the optimal input in identifying the

measurement noise covariances was only slightly improved over that of the sub-

optimal input.
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8.3 Opt_m-I Input Through First-Order Filter

One possible objection to the optimal inputs which are derived from

the optimization technique is that they start from nonzero value which

cannot be realized in practice. For example, in the case of the C-8

Monte Carlo simulation, the initial elevator deflection for the optimal

input was I0°. Although the suboptimal doublet input had an initial

discontinuity of the same magnitude, a more realistic model of the

situation would include the lag action of the control servos. This

would prevent an instantaneous change in elevator deflection for both the

optimal and suboptimal inputs. In addition, the optimal input, for

identifying the short period parameters, has the disadvantage that the

longitudinal velocity does not return to the nominal level after the

input has been applied. For a nominal steady state value, the input

must be two sided, i.e. both positive and negative values.

This section compares the performance of a two sided optimal input,

with a total energy of 101.25 and length of 4 seconds to the performance

of a suboptimal doublet input, of equal energy_

The 2 second optimal input which was used to generate the 4 - second

input was derived for the C-8 four state longitudinal equations of motion

given in section 8.2.1. A first order dynamical system with a time constant

of .2 seconds and unity gain was used to simulate the control surface

servo mechanism.

The 4 second optimal input after passed through the model of the servo

dynamics, appears as in Fig. 8.19 . Note that the actual control surface

deflection has no discontinuities, starts at 0° and has no violent maneuvers.

The suboptimal input, on the other hand, which is shown in Fig. 8w20 ,

while also beginning at 0 °, entails some much more drastic deflections.

Although a Monte Carlo indentlfication simulation was not performed

for these two inputs, their performance, based on the charateristics of

the information matrix, can still be compared. The determinant of the
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information matrix, representing the reciprocal of the volume of the

uncertainty ellipsoid, was 1.6 x 1026 for the optimal input and 7.3 x

1024 for the suboptimal doublet input. Three out of five eigenvalues

of the information for the optimal input were larger, on a one-to-one

basis, than for the suboptimal input, and the trace of M was 1.4 x 108

versus 9.7 x 106 , with the one for the optimal input again being

larger.

In summary, the performance of the 4 second optimal input versus the

suboptimal input including the effects of the making the input two-sided

and the control surface servo delay, changed only slightly from that

observed during the extensive Monte Carlo simulation. Further work

along these lines is needed to make optimal inputs realizable in practice.
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IX

CONCLUSIONS

In this report, the problem of identifying aircraft stability and

control derivatives from flight test data was discussed. It was shown

that the three important elements of the identlflcatlon process are

(i) the identification method, (li) the design of control inputs, and (ill) the

instrumentation. The first part of the report described various methods

that have been used in the past for identification. The special character-

istics and limitations of these methods were discussed. A new technique,

based on the Maximum Likelihood Criterion, was then derived and discussed

in detail. The technique is applicable to nonlinear models containing

both process and measurement noise. As such, the Maximum Likelihood

Method presented here is the most general technique that has been developed

for identifying stability and control derivatives from flight test data.

It consists of a combination of a Kalman filter (linear) or an Extended

Kalman filter (nonlinear) for estimating the state and a Modified Newton-

Raphson iterative procedure for estimating the parameters.

The Maximum Likelihood Identification Method was applied successfully

to three different problems :

(i) Identification of parameters from simulated data for a nonlinear

model of X-22 VTOL aircraft containing both process and measure-

ment noise.

(ii) HL-10 Lifting Body flight test data without gusts.

(ill) M2/F3 Lifting Body flight test data containing gusts.

The Output Error and Equation Error methods which were also tried

gave either poor results or failed to converge on problems (i) and (ill).

Additional problems of identifiability were encountered in the processing

of the HL-10 and M2/F3 flight test data. Those problems were manifested
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as a) opposite signs on the parameter estimates compared to wind-tunnel

and theoretical values, b) large parameter covariances, and c) high

correlation between the parameter estimates. Three different methods were

tried for alleviating these problems:

(i) A priori weighting

(ii) Fixing certain parameters

and (iil) Rank-deflclent solutions.

The last method seems to hold the greatest promise for further

developments.

The second part of the report discusses the theory and the computation

of optimal inputs for linear system identification. The criterion used

for input design is the maximization of the output sensitivity to para-

meter variations. This criterion is related to the Fisher Information

matrix and the Cramer-Rao lower bound for the covariance of the parameter

estimates. The objective of this effort was to determine the control surface

deflections that enhance the effectiveness of identifying stability and

control derivatives from flight test data. The specific application

considered was the longitudinal dynamics of a C-8 aircraft. The optimal

elevator surface deflection time histories were computed and compared with

a doublet input of the same energy and time duration. A Monte Carlo simu-

lation was done using the optimal and the doublet inputs and identifying

short-period parameters from noisy output data. The optimal inputs were

shown to provide more accurate estimates of aircraft parameters compared

to a doublet input.
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X

AREAS FOR FURTHER INVESTIGATION

The followlng areas are proposed for further research on and

practical application of the maximum likelihood identification method

and the design of optimal inputs:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Complete preflight simulation of the Integrated Aircraft

Identification process for a future flight test program.

Identification of stability and control derivatives from

flight test data for specific important (e.g., high angle-of-

attack , transoni_flight regimes. This would require the development

of methods for model structure determination since the aero-

dynamic models in such flight regimes are not well known.

Correlation of the flight test results with the wind-tunnel

results for high performance aircraft.

Determination of the effect of SAS on the identifiability

of the parameters.

Further developments of the Rank-Deficient Method for solving

identifiability problems.

Extensions of the Input Design procedure to nonlinear models

and process noise.

Modifications of the optimal inputs for pilot acceptability

and ease of implementation.

Flight Test validation of optimal inputs.
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APPENDIX A

EQUATION OF MOTION FOR X-22 VTOL

The model for the equations of motion for the X-22 was designed

to represent the longitudinal-vertical three degree of freedom motions

of the vehicle in the body axis coordinate system. Defining

u = change in velocity along the x axis from trim condition

w = change in velocity along the z axis from turn condition

8 = change in pitch angle (fuselage attitude relative to

the horizontal) from the trim value

q = change in pitch rate from zero trim value; since vehicle

is restricted to longitudinal-vertical, wings level motion

only, q =

= change in elevator stick deflection (positive _ giveses
es

positive pitching moment) from trim condition

n x accelerometer signal along the x axis

n = accelerometer signal along the z axisz

the nonlinear model, derived from an examination of wind tunnel

data, is given by

mi_--

U

8
w

X(u)w-qw-g sin 8

Zw(u)w + qu + gcos 8

 (u)w +Mq (u)q
i

+

m

Xo(u) X6es(U)

Zo(u) Z,6es(U)

o o

Mo(U)M_es(U)
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+

m

Xu(U) Xw(U) 0

zu (u) z (u) o

0 0 0

Mu(U Hw(U) Mq(U)

" VlV2

V3

m

The stability and control derivatives are all expressed as first

order functions of u (e.g. M =A M + _ • u) except for Mo(U), Xo(U) and
w w w

o u

Zo(U ) which are second order functions. The derivatives of Xu(U), Zud(u)

d (Xo(U) + X(u) w + X6es(U) ; (u)and Mu(U) are given as du " 6es) du (Zo

+ Z (u)w + Z6es(u) and d Hw(u ) w q M_e sw " 6es) _u (Mo(U) + . + M (u) " q + (u) • _es)

are independent, zero mean white noise
respectively and v i' v2' and v 3

sequences with (diagonal matrix) covariance Q. There are therefore

a total of 23 parameters to identify, enumerated as

and

H ; M u M _u! ; uo w ; q M6e s

Xo ; Xw ; X6 es

Z ; Z ; Z_e s u
o 2 w

There are seven measurements being made of the aircraft state. These

include the four state variables u,w,8 and q , the pitch acceleration,

q, and the two accelerometer outputs nv'"and nz . The equations for
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the accelerometer outputs are

= 1 (u + qw) + sin eg

.I (w- qu) - cos e
n z = g

Substituting in u and w, these expressions can be written as

n z Zw(u)

0 u

0 w

÷

0

q
u m

'u(U)

u(u)

..I- -Xo(U) X_e _ (u)]

_Z'o_(U)z6e_(u)_J

X(u) "i

z.w(u) v2
i

v 3

e
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APPENDIX B

GRADIENT AND INFORMATION MATRIX CALCULATION WITH

ADDED PARTIAL DERIVATIVE TERMS

Since the presence of the process noise requires the use of a

Kalman filter in computing the sensitivity functions, the exact

equations for the gradient and information matrix will include the

additional partials of the Kalman gain and state estimate error

covariance with respect to the parameters. In those cases where

the Kalman gain reaches a steady state, this steady state value can

often be included as unknown parameters (wlth the only error being during

the transient period). However, whenever the system equations are

non-linear, as with the X-22 model, the Kalman filter will not reach

a steady state and added partials will appear.

Using the notation of Section 5.1, the gradient and information

computations as well as the sensitivity function computations are given

below. The additional terms included in these calculations, due to the

time varying Kalman gain, are indicated by a I i The term pjI _J"
L-- --

is used to denote the jth entry in the vector of unknown parameters.

Gradient:

^ T

i_J _ I l i/i-i

N E i/i-]

_PJ i=l Yi _i/i-i

I 1 1
__ff_ xi/i- i _f'

_ 5p. +
3 3
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^ T

I - xi/i- 1 -I

-_ _2 _ _/_-_
_i/i-I

_P.
3

<i-xi,i_,)
where

= H. H_ + R
i/i-I i Pi/i-I l

5H.

HI +H i H_ + H.
- Pi/i-I " BP L z Pi/i-i _p.

J
_P. }Sp.

3 3

+
_P.
3
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In£ormatfon Matrix:

T -I _3^_._:/°_^ _,_ +
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I °_il_-1 1

i=l Yl
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0

-i o
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@PK ^

B i _ +
OP K

190



Sermttivity Function:

Between measurements:

At a measurement:

dt _p

(t:___aP. ti - wi
3

where

- +

/ °xi/i-_. )
_f' OXl/i-i Of'

--'_x - 0 5 - + O_j

i A

ON i zi - kill_ I]

T
i/i-I Pi/i-i _ i/i-i

H T -i O_i/i-1 -1

-Pi/i-ii _/i-i 05 _i/i-1

_5
= (I + F i At) _Pi/i

_ (I + r i At)T + _pj(hQgZ) At2

+ _pj At Pi/i (I + Fi At)T+ (I + Fi t_t) Pi/i \_--_j/

bPi/--i = (I - wi Hi) bPi/i-1 f_wi _H. \

_Pj apj apj

_t

and Fi "= _x_fl

t=t;
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